OFFSET
1,1
COMMENTS
If the limitation of being composite is removed we also have the numbers p such that if p is prime then p + 12 is prime too (A046133).
EXAMPLE
16' = (16 + 12)' = 28' = 32;
65' = (65 + 12)' = 77' = 18.
MAPLE
with(numtheory); P:= proc(q, h) local a, b, n, p;
for n from 1 to q do if not isprime(n) then a:=n*add(op(2, p)/op(1, p), p=ifactors(n)[2]); b:=(n+h)*add(op(2, p)/op(1, p), p=ifactors(n+h)[2]);
if a=b then print(n); fi; fi; od; end: P(10^9, 12);
MATHEMATICA
a[n_] := If[Abs@ n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[Abs@ n]]];
Select[Range@ 100000, And[CompositeQ@ #, a@# == a[# + 12]] &] (* Michael De Vlieger, Apr 22 2015, after Michael Somos at A003415 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Apr 17 2015
EXTENSIONS
a(16)-a(28) from Lars Blomberg, May 06 2015
STATUS
approved