Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Mar 16 2019 19:54:54
%S 132,476,2108,16748,27548,28676,99524,100076,239948,308228,344129,
%T 573476,601676,822908,860276,883268,1673228,3274010,4959476,7548956,
%U 8916044,9048428,9215348,9643169,9833588,10011908,14773676,17119436,18529964,19459028,21335948,21739148
%N Composite numbers n such that n'=(n+8)', where n' is the arithmetic derivative of n.
%C If the limitation of being composite is removed we also have the numbers p such that if p is prime then p + 8 is prime too (A023202).
%e 132' = (132 + 8)' = 140' = 188;
%e 476' = (476 + 8)' = 484' = 572.
%p with(numtheory); P:= proc(q,h) local a,b,n,p;
%p for n from 1 to q do if not isprime(n) then a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); b:=(n+h)*add(op(2,p)/op(1,p),p=ifactors(n+h)[2]);
%p if a=b then print(n); fi; fi; od; end: P(10^9,8);
%t a[n_] := If[Abs@ n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[Abs@ n]]];
%t Select[Range@ 100000, And[CompositeQ@ #, a@# == a[# + 8]] &] (* _Michael De Vlieger_, Apr 22 2015, after _Michael Somos_ at A003415 *)
%Y Cf. A003415, A023202, A226779.
%K nonn
%O 1,1
%A _Paolo P. Lava_, Apr 17 2015