OFFSET
1,4
COMMENTS
The sum of the divisors d of n such that n/d is a coreful divisor of n (a coreful divisor of n is a divisor with the same squarefree kernel as n). The number of these divisors is A005361(n). - Amiram Eldar, Jun 30 2023
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..16383
Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
FORMULA
Multiplicative with a(p^1)=1 and a(p^e) = (p^e-1)/(p-1) if e>1.
a(n) = 1 iff n in A005117.
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - 1/p^(s-1) + 1/p^(2*s-1)). - Amiram Eldar, Sep 09 2023
MAPLE
A335341 := proc(n)
local a, pe, p, e ;
a := 1;
for pe in ifactors(n)[2] do
p := op(1, pe) ;
e := op(2, pe) ;
if e > 1 then
a := a*(p^e-1)/(p-1) ;
end if;
end do:
a ;
end proc:
MATHEMATICA
f[p_, e_] := (p^e-1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 26 2020 *)
PROG
(PARI) a(n) = sigma(n/factorback(factor(n)[, 1])); \\ Michel Marcus, Jun 02 2020
CROSSREFS
KEYWORD
nonn,mult,easy
AUTHOR
R. J. Mathar, Jun 02 2020
STATUS
approved