login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335341
Sum of divisors of A003557(n).
5
1, 1, 1, 3, 1, 1, 1, 7, 4, 1, 1, 3, 1, 1, 1, 15, 1, 4, 1, 3, 1, 1, 1, 7, 6, 1, 13, 3, 1, 1, 1, 31, 1, 1, 1, 12, 1, 1, 1, 7, 1, 1, 1, 3, 4, 1, 1, 15, 8, 6, 1, 3, 1, 13, 1, 7, 1, 1, 1, 3, 1, 1, 4, 63, 1, 1, 1, 3, 1, 1, 1, 28, 1, 1, 6, 3, 1, 1, 1
OFFSET
1,4
COMMENTS
The sum of the divisors d of n such that n/d is a coreful divisor of n (a coreful divisor of n is a divisor with the same squarefree kernel as n). The number of these divisors is A005361(n). - Amiram Eldar, Jun 30 2023
FORMULA
a(n) = A000203(A003557(n)).
Multiplicative with a(p^1)=1 and a(p^e) = (p^e-1)/(p-1) if e>1.
A057723(n) = A007947(n)*a(n).
a(n) = 1 iff n in A005117.
a(n) = A336567(n) + A003557(n). - Antti Karttunen, Jul 28 2020
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - 1/p^(s-1) + 1/p^(2*s-1)). - Amiram Eldar, Sep 09 2023
a(n) = A047994(n)/A173557(n). - Ridouane Oudra, Oct 30 2023
MAPLE
A335341 := proc(n)
local a, pe, p, e ;
a := 1;
for pe in ifactors(n)[2] do
p := op(1, pe) ;
e := op(2, pe) ;
if e > 1 then
a := a*(p^e-1)/(p-1) ;
end if;
end do:
a ;
end proc:
MATHEMATICA
f[p_, e_] := (p^e-1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 26 2020 *)
PROG
(PARI) a(n) = sigma(n/factorback(factor(n)[, 1])); \\ Michel Marcus, Jun 02 2020
CROSSREFS
Cf. A000203, A003557, A005361 (number of divisors of A003557), A336567.
Sequence in context: A360288 A263756 A204984 * A243473 A325969 A325826
KEYWORD
nonn,mult,easy
AUTHOR
R. J. Mathar, Jun 02 2020
STATUS
approved