login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369796
Number of permutations of [n] whose fixed points sum to n.
2
1, 1, 0, 1, 3, 13, 64, 406, 2737, 23044, 200509, 2078460, 22323513, 275402437, 3501602483, 50310672046, 739235942264, 12084285146335, 202054808987101, 3703410393626031, 69269248667062892, 1409725495837854024, 29169764518508360709, 651568557906956269430
OFFSET
0,5
LINKS
Wikipedia, Permutation
FORMULA
a(n) = Sum_{k>=0} A000166(n-k)*A008289(n,k).
a(n) = A369596(n,n).
EXAMPLE
a(0) = 1: the empty permutation.
a(1) = 1: 1.
a(3) = 1: 213.
a(4) = 3: 1432, 2314, 3124.
a(5) = 13: 13542, 15243, 21435, 23415, 24135, 31425, 34125, 34215, 41235, 42351, 43125, 43215, 52314.
a(6) = 64: 123564, 123645, 132654, 134652, 136254, ..., 542136, 542316, 621435, 625413, 625431.
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, n*g(n-1)+(-1)^n) end:
b:= proc(n, i, m) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, g(m), b(n, i-1, m)+b(n-i, min(n-i, i-1), m-1)))
end:
a:= n-> b(n$3):
seq(a(n), n=0..23);
CROSSREFS
Main diagonal of A369596.
Sequence in context: A065065 A020086 A151987 * A356485 A126149 A060927
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 02 2024
STATUS
approved