OFFSET
0,2
COMMENTS
For a relation R on [n], let E = domain(R intersect R^(-1)) and let F = [n]\E. Then q(R) := R intersect E X E and let s(R) := R intersect F X F.
LINKS
E. Norris, The structure of an idempotent relation, Semigroup Forum, Vol 18 (1979), 319-329.
FORMULA
a(n) = Sum_{k=0..n} A369776(n,k) * 3^(k*(n-k)).
MATHEMATICA
nn = 18; posets =Select[Import["https://oeis.org/A001035/b001035.txt", "Table"],
Length@# == 2 &][[All, 2]]; p[x_] := Total[posets Table[x^i/i!, {i, 0, 18}]]; Map[Total, (Map[Select[#, # > 0 &] &, Table[n!, {n, 0, nn}] CoefficientList[
Series[ p[Exp[ y x] - 1]*p[ x], {x, 0, nn}], {x, y}]])*
Table[Table[3^(k (n - k)), {k, 0, n}], {n, 0, nn}]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Feb 01 2024
STATUS
approved