login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113098
Number of 4-tournament sequences: a(n) gives the number of increasing sequences of n positive integers (t_1,t_2,...,t_n) such that t_1 = 2 and t_i = 2 (mod 3) and t_{i+1} <= 4*t_i for 1<i<n.
13
1, 2, 13, 242, 13228, 2241527, 1237069018, 2305369985312, 14874520949557933, 338242806223319079422, 27474512329417917714396073, 8057337874806992183898478061882, 8607002252619465665736907583406214288
OFFSET
0,2
COMMENTS
Equals column 0 of triangle A113097 = A113095^2 (matrix square), where: A113095(n,k) = [A113095^4](n-1,k-1) + [A113095^4](n-1,k).
LINKS
M. Cook and M. Kleber, Tournament sequences and Meeussen sequences, Electronic J. Comb. 7 (2000), #R44.
EXAMPLE
The tree of 4-tournament sequences of descendents
of a node labeled (2) begins:
[2]; generation 1: 2->[5,8]; generation 2:
5->[8,11,14,17,20], 8->[11,14,17,20,23,26,29,32]; ...
Then a(n) gives the number of nodes in generation n.
Also, a(n+1) = sum of labels of nodes in generation n.
PROG
(PARI) {a(n)=local(M=matrix(n+1, n+1)); for(r=1, n+1, for(c=1, r, M[r, c]=if(r==c, 1, if(c>1, (M^4)[r-1, c-1])+(M^4)[r-1, c]))); return((M^2)[n+1, 1])}
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 14 2005
STATUS
approved