OFFSET
0,2
COMMENTS
LINKS
T. D. Noe, Table of n, a(n) for n=0..30
M. Cook and M. Kleber, Tournament sequences and Meeussen sequences, Electronic J. Comb. 7 (2000), #R44.
EXAMPLE
The tree of 4-tournament sequences of descendents of a node labeled (3) begins:
[3]; generation 1: 3->[6,9,12]; generation 2:
6->[9,12,15,18,21,24], 9->[12,15,18,21,24,27,30,33,36],
12->[15,18,21,24,27,30,33,36,39,42,45,48]; ...
Then a(n) gives the number of nodes in generation n.
Also, a(n+1) = sum of labels of nodes in generation n.
PROG
(PARI) {a(n)=local(M=matrix(n+1, n+1)); for(r=1, n+1, for(c=1, r, M[r, c]=if(r==c, 1, if(c>1, (M^4)[r-1, c-1])+(M^4)[r-1, c]))); return((M^3)[n+1, 1])}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 14 2005
STATUS
approved