login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113085
Number of 3-tournament sequences: a(n) gives the number of increasing sequences of n positive integers (t_1,t_2,...,t_n) such that t_1 = 1 and t_i = 1 (mod 2) and t_{i+1} <= 3*t_i for 1<i<n.
10
1, 1, 3, 21, 331, 11973, 1030091, 218626341, 118038692523, 166013096151621, 619176055256353291, 6207997057962300681573, 169117528577725378851523691, 12626174170113987651028630856581, 2602022118010488151483064379958957003
OFFSET
0,3
COMMENTS
Equals column 0 of triangle A113084, which satisfies: A113084(n,k) = [A113084^3](n-1,k-1) + [A113084^3](n-1,k).
LINKS
M. Cook and M. Kleber, Tournament sequences and Meeussen sequences, Electronic J. Comb. 7 (2000), #R44.
EXAMPLE
The tree of 3-tournament sequences of odd integer
descendents of a node labeled (1) begins:
[1]; generation 1: 1->[3]; generation 2: 3->[5,7,9];
generation 3: 5->[7,9,11,13,15], 7->[9,11,13,15,17,19,21],
9->[11,13,15,17,19,21,23,25,27]; ...
Then a(n) gives the number of nodes in generation n.
Also, a(n+1) = sum of labels of nodes in generation n.
PROG
(PARI) {a(n)=local(M=matrix(n+1, n+1)); for(r=1, n+1, for(c=1, r, M[r, c]=if(r==c, 1, if(c>1, (M^3)[r-1, c-1])+(M^3)[r-1, c]))); return(M[n+1, 1])}
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 14 2005
STATUS
approved