The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008934 Number of tournament sequences: sequences (a_1, a_2, ..., a_n) with a_1 = 1 such that a_i < a_{i+1} <= 2*a_i for all i. 26
 1, 1, 2, 7, 41, 397, 6377, 171886, 7892642, 627340987, 87635138366, 21808110976027, 9780286524758582, 7981750158298108606, 11950197013167283686587, 33046443615914736611839942, 169758733825407174485685959261, 1627880269212042994531083889564192 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Also number of Meeussen sequences of length n (see the Cook-Kleber reference). Column 1 of triangle A093729. Also generated by the iteration procedure that constructs triangle A093654. - Paul D. Hanna, Apr 14 2004 a(n) is the number of sequences (u_1,u_2,...,u_n) of positive integers such that u_1=1 and u_i <= 1+ u_1+...+u_{i-1} for 2<=i<=n. For example, omitting parentheses and commas, a(3)=7 counts 111, 112, 113, 121, 122, 123, 124. The difference-between-successive-terms operator is a bijection from the title sequences to these sequences. For example, the tournament sequence (1, 2, 4, 5, 9, 16) bijects to (1,2,1,4,7). (To count tournament sequences by length, the offset should be 1.) - David Callan, Oct 31 2020 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..85 (first 31 terms from T. D. Noe) M. Cook and M. Kleber, Tournament sequences and Meeussen sequences, Electronic J. Comb. 7 (2000), #R44. E. Neuwirth, Computing tournament sequence numbers efficiently..., Séminaire Lotharingien de Combinatoire, B47h (2002), 12 pp. Mauro Torelli, Increasing integer sequences and Goldbach's conjecture, RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, 40:2 (2006), pp. 107-121. Index entries for sequences related to tournaments FORMULA a(n) = A093729(n, 1). a(n) = A093655(2^n). - Paul D. Hanna, Apr 14 2004 a(n) = A097710(n, 0). - Paul D. Hanna, Aug 24 2004 From Benedict W. J. Irwin, Nov 26 2016: (Start) Conjecture: a(n) is given by a series of nested sums as follows: a(2) = Sum_{i=1..2} 1, a(3) = Sum_{i=1..2} Sum_{j=1..i+2} 1, a(4) = Sum_{i=1..2} Sum_{j=1..i+2} Sum_{k=1..i+j+2} 1, a(5) = Sum_{i=1..2} Sum_{j=1..i+2} Sum_{k=1..i+j+2} Sum_{l=1..i+j+k+2} 1. (End) EXAMPLE The 7 tournament sequences of length 4 are 1234, 1235, 1236, 1245, 1246, 1247, 1248. MATHEMATICA t[n_?Negative, _] = 0; t[0, _] = 1; t[_, 0] = 0; t[n_, k_] /; k <= n := t[n, k] = t[n, k-1] - t[n-1, k] + t[n-1, 2k-1] + t[n-1, 2 k]; t[n_, k_] /; k > n := t[n, k] =Sum[(-1)^(j-1) Binomial[n+1, j]*t[n, k-j] , {j, 1, n+1}]; Table[t[n, 1], {n, 0, 15} ] (* Jean-François Alcover, May 17 2011, after PARI prog. *) PROG (PARI) {T(n, k)=if(n<0, 0, if(n==0, 1, if(k==0, 0, if(k<=n, T(n, k-1)-T(n-1, k)+T(n-1, 2*k-1)+T(n-1, 2*k), sum(j=1, n+1, (-1)^(j-1)*binomial(n+1, j)*T(n, k-j))))))} /*(Cook-Kleber)*/ a(n)=T(n, 1) CROSSREFS Cf. A058222, A058223. Cf. A093729, A093655. Forms column 0 of triangle A097710. Sequence in context: A163921 A213434 A331920 * A084871 A340645 A122942 Adjacent sequences: A008931 A008932 A008933 * A008935 A008936 A008937 KEYWORD nonn,nice,easy AUTHOR Mauro Torelli (torelli(AT)hermes.mc.dsi.unimi.it), Jeffrey Shallit STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 23:35 EDT 2023. Contains 365554 sequences. (Running on oeis4.)