|
|
A008934
|
|
Number of tournament sequences: sequences (a_1, a_2, ..., a_n) with a_1 = 1 such that a_i < a_{i+1} <= 2*a_i for all i.
|
|
26
|
|
|
1, 1, 2, 7, 41, 397, 6377, 171886, 7892642, 627340987, 87635138366, 21808110976027, 9780286524758582, 7981750158298108606, 11950197013167283686587, 33046443615914736611839942, 169758733825407174485685959261, 1627880269212042994531083889564192
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Also number of Meeussen sequences of length n (see the Cook-Kleber reference).
a(n) is the number of sequences (u_1,u_2,...,u_n) of positive integers such that u_1=1 and u_i <= 1+ u_1+...+u_{i-1} for 2<=i<=n. For example, omitting parentheses and commas, a(3)=7 counts 111, 112, 113, 121, 122, 123, 124. The difference-between-successive-terms operator is a bijection from the title sequences to these sequences. For example, the tournament sequence (1, 2, 4, 5, 9, 16) bijects to (1,2,1,4,7). (To count tournament sequences by length, the offset should be 1.) - David Callan, Oct 31 2020
|
|
LINKS
|
|
|
FORMULA
|
Conjecture: a(n) is given by a series of nested sums as follows:
a(2) = Sum_{i=1..2} 1,
a(3) = Sum_{i=1..2} Sum_{j=1..i+2} 1,
a(4) = Sum_{i=1..2} Sum_{j=1..i+2} Sum_{k=1..i+j+2} 1,
a(5) = Sum_{i=1..2} Sum_{j=1..i+2} Sum_{k=1..i+j+2} Sum_{l=1..i+j+k+2} 1.
(End)
|
|
EXAMPLE
|
The 7 tournament sequences of length 4 are 1234, 1235, 1236, 1245, 1246, 1247, 1248.
|
|
MATHEMATICA
|
t[n_?Negative, _] = 0; t[0, _] = 1; t[_, 0] = 0; t[n_, k_] /; k <= n := t[n, k] = t[n, k-1] - t[n-1, k] + t[n-1, 2k-1] + t[n-1, 2 k]; t[n_, k_] /; k > n := t[n, k] =Sum[(-1)^(j-1) Binomial[n+1, j]*t[n, k-j] , {j, 1, n+1}]; Table[t[n, 1], {n, 0, 15} ] (* Jean-François Alcover, May 17 2011, after PARI prog. *)
|
|
PROG
|
(PARI) {T(n, k)=if(n<0, 0, if(n==0, 1, if(k==0, 0, if(k<=n, T(n, k-1)-T(n-1, k)+T(n-1, 2*k-1)+T(n-1, 2*k), sum(j=1, n+1, (-1)^(j-1)*binomial(n+1, j)*T(n, k-j))))))} /*(Cook-Kleber)*/ a(n)=T(n, 1)
|
|
CROSSREFS
|
Forms column 0 of triangle A097710.
|
|
KEYWORD
|
nonn,nice,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|