login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A097710
Lower triangular matrix T, read by rows, such that row (n) is formed from the sums of adjacent terms in row (n-1) of the matrix square T^2, with T(0,0)=1.
12
1, 1, 1, 2, 3, 1, 7, 13, 7, 1, 41, 88, 61, 15, 1, 397, 951, 781, 257, 31, 1, 6377, 16691, 15566, 6231, 1041, 63, 1, 171886, 484490, 500057, 231721, 48303, 4161, 127, 1, 7892642, 23701698, 26604323, 13843968, 3406505, 374127, 16577, 255, 1
OFFSET
0,4
COMMENTS
Column 0 is equal to sequence A008934, which is the number of tournament sequences.
This triangle has the same row sums and first column terms as in rows 2^n, for n>=0, of triangle A093654.
FORMULA
T(n, k) = T^2(n-1, k-1) + T^2(n-1, k) for n>=1 and k>1, with T(n, 1) = T^2(n-1, 1) and T(n,n) = 1 for n>=0, where T^2 is the matrix square of this triangle T.
T(n, k) = Sum_{j=0..n-1} T(n-1, j)*(T(j, k-1) + T(j,k)), with T(n, 0) = Sum_{j=0..n-1} T(n-1,j)*T(j,0), and T(n, n) = 1.
T(n, 0) = A008934(n).
T(n, 1) = A097711(n).
Sum_{k=0..n} T(n, k) = A093657(n+1) (row sums).
From G. C. Greubel, Feb 21 2024: (Start)
T(n, n-1) = A000225(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n). (End)
EXAMPLE
Rows of this triangle T begin:
1;
1, 1;
2, 3, 1;
7, 13, 7, 1;
41, 88, 61, 15, 1;
397, 951, 781, 257, 31, 1;
6377, 16691, 15566, 6231, 1041, 63, 1;
171886, 484490, 500057, 231721, 48303, 4161, 127, 1;
Rows of T^2 begin:
1;
2, 1;
7, 6, 1;
41, 47, 14, 1;
397, 554, 227, 30, 1;
6377, 10314, 5252, 979, 62, 1;
171886, 312604, 187453, 44268, 4035, 126, 1;
7892642, 15809056, 10795267, 3048701, 357804, 16323, 254, 1;
The sums of adjacent terms in row (n) of T^2 forms row (n+1) of T:
T(5,0) = T^2(4,0) = 397;
T(5,1) = T^2(4,0) + T^2(4,1) = 397 + 554 = 951;
T(5,2) = T^2(4,1) + T^2(4,2) = 554 + 227 = 781.
Rows of matrix inverse T^(-1) begins:
1;
-1, 1;
1, -3, 1;
-1, 8, -7, 1;
1, -25, 44, -15, 1;
-1, 111, -346, 208, -31, 1;
1, -809, 4045, -3720, 912, -63, 1;
-1, 10360, -77351, 99776, -35136, 3840, -127, 1; ...
which is a signed version of A097712.
MATHEMATICA
T[n_, k_] := T[n, k] = Which[n<0 || k>n, 0, n == k, 1, k == 0, Sum[T[n-1, j]*T[j, 0], {j, 0, n-1}], True, Sum[T[n-1, j]*T[j, k-1], {j, 0, n-1}] + Sum[T[n-1, j]*T[j, k], {j, 0, n-1}]]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 23 2016, adapted from PARI *)
PROG
(PARI) /* Using Recurrence relation: */
{T(n, k) = if(n<0||k>n, 0, if(n==k, 1, if(k==0, sum(j=0, n-1, T(n-1, j)*T(j, 0)), sum(j=0, n-1, T(n-1, j)*T(j, k-1)) + sum(j=0, n-1, T(n-1, j)*T(j, k)); )))}
for(n=0, 8, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) /* Faster: using Matrix generating method: */
{T(n, k) = my(M=matrix(2, 2, r, c, if(r>=c, 1))); for(i=1, n,
N=matrix(#M+1, #M+1, r, c, if(r>=c, if(r<=#M, M[r, c], if(c>1, (M^2)[r-1, c-1]) + if(c<=#M, (M^2)[r-1, c])) ));
M=N; ); M[n+1, k+1]}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print("")) \\ Paul D. Hanna, Nov 27 2016
(SageMath)
@CachedFunction
def T(n, k): # T = A097710
if n< 0 or k<0 or k>n: return 0
elif k==n: return 1
elif k==0: return sum(T(n-1, j)*T(j, 0) for j in range(n))
else: return sum(T(n-1, j)*(T(j, k-1)+T(j, k)) for j in range(n))
flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 21 2024
CROSSREFS
Cf. A008934 (column k=0), A093657 (row sums), A097711 (column k=1).
Sequence in context: A103364 A104027 A192363 * A171024 A109198 A081320
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Aug 22 2004
STATUS
approved