login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008935
If 2n = Sum 2^e(k) then a(n) = Sum e(k)^2.
6
1, 4, 5, 9, 10, 13, 14, 16, 17, 20, 21, 25, 26, 29, 30, 25, 26, 29, 30, 34, 35, 38, 39, 41, 42, 45, 46, 50, 51, 54, 55, 36, 37, 40, 41, 45, 46, 49, 50, 52, 53, 56, 57, 61, 62, 65, 66, 61, 62, 65, 66, 70, 71, 74, 75, 77, 78, 81, 82, 86, 87, 90, 91, 49, 50, 53, 54, 58, 59, 62
OFFSET
1,2
FORMULA
G.f.: 1/(1-x) * Sum_{k>=0} (k+1)^2*x^2^k/(1+x^2^k). - Ralf Stephan, Jun 23 2003
EXAMPLE
To get a(5), we write 10 = 2 + 8 = 2^1 + 2^3 so a(5) = 1^2 + 3^2 = 10.
MAPLE
a:= n-> (l-> add(l[i]*i^2, i=1..nops(l)))(convert(n, base, 2)):
seq(a(n), n=1..80); # Alois P. Heinz, Nov 20 2019
MATHEMATICA
a[n_] := Total[Flatten[Position[Reverse[IntegerDigits[n, 2]], 1]]^2]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover Mar 21 2011 *)
PROG
(C)
#include <stdio.h>
#include <stdlib.h>
#define USAGE "Usage: 'A008935 num'\n where num is the index of the desired ending value in the sequence.\n"
#define MAX 1023
#define SHIFT_MAX 9
int main(int argc, char *argv[]) { unsigned short mask, i, j, end; unsigned long sum; if (argc < 2) { fprintf(stderr, USAGE); return EXIT_FAILURE; } end = atoi(argv[1]); end = (end >= MAX) ? MAX : end;
fprintf(stdout, "Values: "); for (i = 1; i <= end; i++) { sum = 0; mask = 1; for (j = 0; j < SHIFT_MAX; j++, mask *= 2) if (i & mask) sum += (j+1) * (j+1); fprintf(stdout, "%ld", sum); if (i < end) fprintf(stdout, ", "); } fprintf(stdout, "\n"); return EXIT_SUCCESS; }
(Haskell)
a008935 = f 1 where
f k x | x == 0 = 0
| r == 0 = f (k+1) x'
| otherwise = k^2 + f (k+1) x' where (x', r) = divMod x 2
-- Reinhard Zumkeller, Jul 05 2011
CROSSREFS
Gives A003995 if sorted and duplicates removed.
Sequence in context: A109825 A327175 A193259 * A003995 A064473 A287962
KEYWORD
nonn,nice,easy
EXTENSIONS
Corrected and extended by Larry Reeves (larryr(AT)acm.org), Mar 22 2000
STATUS
approved