OFFSET
1,2
COMMENTS
Sum_{n>=1} 1/phi^a(n) = 1/phi + Sum_{n>=1} 1/phi^(a(n) + 2*n) = 0.880771363850914609641... where phi = (sqrt(5)+1)/2. - Paul D. Hanna, Sep 14 2011
FORMULA
EXAMPLE
G.f.: x = x*((1+x) - x)/(1+x) + x^2*((1+x)^2 - x^2)/(1+x)^4 + x^3*((1+x)^3 - x^3)/(1+x)^5 + x^4*((1+x)^4 - x^4)/(1+x)^9 + x^5*((1+x)^5 - x^5)/(1+x)^10 + x^6*((1+x)^6 - x^6)/(1+x)^12 + x^7*((1+x)^7 - x^7)/(1+x)^13 + x^8*((1+x)^8 - x^8)/(1+x)^18 +...+ x^n*((1+x)^n - x^n)/(1+x)^a(n) +...
PROG
(PARI) {a(n)=if(n<1, 0, n + floor(log(n+1/2)/log(2)) + valuation(n!, 2))}
(PARI) {a(n)=if(n<1, 0, if(n==1, 1, polcoeff(sum(m=1, n+1, x^m*((1+x)^m-x^m)/(1+x +x^2*O(x^n))^if(m>=n, 1, a(m)))+x^(n+1), n+1)))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 19 2011
STATUS
approved