login
A064801
Take 1, skip 2, take 2, skip 3, take 3, etc.
10
1, 4, 5, 9, 10, 11, 16, 17, 18, 19, 25, 26, 27, 28, 29, 36, 37, 38, 39, 40, 41, 49, 50, 51, 52, 53, 54, 55, 64, 65, 66, 67, 68, 69, 70, 71, 81, 82, 83, 84, 85, 86, 87, 88, 89, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 121, 122, 123, 124, 125, 126, 127, 128
OFFSET
1,2
COMMENTS
A253607(a(n)) < 0. - Reinhard Zumkeller, Jan 05 2015
Integers m such that A000196(m) = A079643(m). - Firas Melaih, Dec 10 2020
Also possible values of floor(x*floor(x)) for real x >= 1. - Jianing Song, Feb 16 2021
LINKS
FORMULA
a(n) = A004202(n) - 1.
Can be interpreted as a table read by rows: T(n,k) = n^2 + k, 0 <= k < n. T(n,k) = 0 iff k > A000196(n); T(n,0) = A000290(n); T(n,1) = A002522(n) for n > 1; T(n,2) = A010000(n) = A059100(n) for n > 2; T(n, n-3) = A014209(n-1) for n > 2; T(n, n-2) = A028552(n) for n > 1; T(n, n-1) = A028387(n-1); T(2*n+1, n) = A001107(n+1). - Reinhard Zumkeller, Nov 18 2003
Numbers k such that floor(sqrt(k)) * (floor(sqrt(k)) + 1) > k. - Rainer Rosenthal, Jul 19 2024
MAPLE
seq(`if`(floor(sqrt(k)) * (floor(sqrt(k)) + 1) > k, k, NULL), k = 0..2034); # a(1)..a(1000), Rainer Rosenthal, Jul 19 2024
MATHEMATICA
a = Table[n, {n, 0, 200} ]; b = {}; Do[a = Drop[a, {1, n} ]; b = Append[b, Take[a, {1, n} ]]; a = Drop[a, {1, n} ], {n, 1, 14} ]; Flatten[b]
Flatten[Table[Range[n^2, n^2+n-1], {n, 12}]] (* Harvey P. Dale, Dec 18 2015 *)
PROG
(PARI) { n=0; for (m=1, 10^9, s=m^2; a=0; for (k=0, m - 1, a=s+k; write("b064801.txt", n++, " ", a); if (n==1000, return)) ) } \\ Harry J. Smith, Sep 26 2009
(Haskell)
a064801 n = a064801_list !! (n-1)
a064801_list = f 1 [1..] where
f k xs = us ++ f (k + 1) (drop (k + 1) vs)
where (us, vs) = splitAt k xs
-- Reinhard Zumkeller, May 16 2014
(Python)
from math import isqrt # after Rainer Rosenthal
def isA(k: int): return k < ((s:=isqrt(k)) * (s + 1))
print([k for k in range(129) if isA(k)]) # Peter Luschny, Jul 19 2024
CROSSREFS
Cf. A061885 (complement), A253607.
Cf. A136272.
Sequence in context: A115915 A007536 A209887 * A109825 A327175 A193259
KEYWORD
easy,nonn
AUTHOR
Robert G. Wilson v, Oct 21 2001
STATUS
approved