login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004202
Skip 1, take 1, skip 2, take 2, skip 3, take 3, etc.
13
2, 5, 6, 10, 11, 12, 17, 18, 19, 20, 26, 27, 28, 29, 30, 37, 38, 39, 40, 41, 42, 50, 51, 52, 53, 54, 55, 56, 65, 66, 67, 68, 69, 70, 71, 72, 82, 83, 84, 85, 86, 87, 88, 89, 90, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132
OFFSET
1,1
COMMENTS
a(n) are the numbers satisfying m < sqrt(a(n)) < m + 0.5 for some integer m. - Floor van Lamoen, Jul 24 2001
a(A000217(n)) = A002378(n). [Reinhard Zumkeller, Feb 12 2011]
Complement of A004201. Upper s(n)-Wythoff sequence (as defined in A184117), for s(n)=A002024(n)=floor[1/2+sqrt(2n)]. I.e., A004202(n) = A002024(n) + A004201(n), with A004201(1)=1 and for n>1, A004201(n) = least positive integer not yet in (A004201(1..n-1) union A004202(1..n-1)). - M. F. Hasler (following observations from R. J. Mathar), Feb 13 2011
Positions of record values in A256188 that are greater than 1: A014132(n) = A256188(a(n)). - Reinhard Zumkeller, Mar 26 2015
LINKS
FORMULA
a(n) = n + A000217(A002024(n)). - M. F. Hasler, Feb 13 2011
T(n, k) = n^2 + k, for n>=1, k>=1 as a triangular array. a(n) = n + A127739(n). - Michael Somos, May 03 2019
EXAMPLE
Interpretation as Wythoff sequence (from Clark Kimberling):
s = (1,2,2,3,3,3,4,4,4,4...) = A002024 (n n's);
a = (1,3,4,7,8,9,13,14,...) = A004201 = least number > 0 not yet in a or b;
b = (2,5,6,10,11,12,17,18,...) = A004202 = a+s.
From Michael Somos, May 03 2019: (Start)
As a triangular array
2;
5, 6;
10, 11, 12;
17, 18, 19, 20;
(End)
MATHEMATICA
a = Table[n, {n, 1, 210} ]; b = {}; Do[a = Drop[a, {1, n} ]; b = Append[b, Take[a, {1, n} ]]; a = Drop[a, {1, n} ], {n, 1, 14} ]; Flatten[b]
a[ n_] := If[ n < 1, 0, With[{m = Round@Sqrt[2 n]}, n + m (m + 1)/2]]; (* Michael Somos, May 03 2019 *)
Take[#, (-Length[#])/2]&/@Module[{nn=20}, TakeList[Range[ nn+nn^2], 2*Range[ nn]]]//Flatten (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 13 2019 *)
PROG
(Haskell)
a004202 n = a004202_list !! (n-1)
a004202_list = skipTake 1 [1..] where
skipTake k xs = take k (drop k xs) ++ skipTake (k + 1) (drop (2*k) xs)
-- Reinhard Zumkeller, Feb 12 2011
(PARI) A004202(n) = n+0+(n=(sqrtint(8*n-7)+1)\2)*(n+1)\2 \\ M. F. Hasler, Feb 13 2011
(PARI) {a(n) = my(m); if( n<1, 0, m=round(sqrt(2*n)); n + m*(m+1)/2)}; /* Michael Somos, May 03 2019 */
(Python)
from math import isqrt, comb
def A004202(n): return n+comb((m:=isqrt(k:=n<<1))+(k-m*(m+1)>=1)+1, 2) # Chai Wah Wu, Jun 19 2024
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alexander Stasinski
STATUS
approved