login
A127739
Triangle read by rows, in which row n contains the triangular number T(n) = A000217(n) repeated n times; smallest triangular number greater than or equal to n.
4
1, 3, 3, 6, 6, 6, 10, 10, 10, 10, 15, 15, 15, 15, 15, 21, 21, 21, 21, 21, 21, 28, 28, 28, 28, 28, 28, 28, 36, 36, 36, 36, 36, 36, 36, 36, 45, 45, 45, 45, 45, 45, 45, 45, 45, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66
OFFSET
1,2
COMMENTS
Seen as a sequence, these are the triangular numbers applied to the Kruskal-Macaulay function A123578. - Peter Luschny, Oct 29 2022
LINKS
Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
FORMULA
Central terms: T(2*n-1,n) = A000384(n). - Reinhard Zumkeller, Mar 18 2011
a(n) = A003057(n)*A002024(n)/2; a(n) = (t+2)*(t+1)/2, where t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Feb 08 2013
Sum_{n>=1} 1/a(n)^2 = 8 - 2*Pi^2/3. - Amiram Eldar, Aug 15 2022
a(n) = k(n)*(1 + k(n))/2 = A000217(A123578(n)), where k = A123578. - Peter Luschny, Oct 29 2022
EXAMPLE
First few rows of the triangle are:
1;
3, 3;
6, 6, 6;
10, 10, 10, 10;
15, 15, 15, 15, 15;
...
MAPLE
A127739 := proc(n) local t, s; t := 1; s := 0;
while t <= n do s := s + 1; t := t + s od; s*(1 + s)/2 end:
seq(A127739(n), n = 1..66); # Peter Luschny, Oct 29 2022
MATHEMATICA
Table[n(n+1)/2, {n, 100}, {n}]//Flatten (* Zak Seidov, Mar 19 2011 *)
PROG
(Haskell)
a127739 n k = a127739_tabl !! (n-1) !! (k-1)
a127739_row n = a127739_tabl !! (n-1)
a127739_tabl = zipWith ($) (map replicate [1..]) $ tail a000217_list
-- Reinhard Zumkeller, Feb 03 2012, Mar 18 2011
(PARI) A127739=n->binomial((sqrtint(8*n)+3)\2, 2) \\ M. F. Hasler, Mar 09 2014
(Python)
from math import isqrt
def A127739(n): return (r:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))*(r+1)>>1 # Chai Wah Wu, Nov 07 2024
CROSSREFS
KEYWORD
nonn,tabl,changed
AUTHOR
Gary W. Adamson, Jan 27 2007
EXTENSIONS
Name edited by Michel Marcus, Apr 30 2020
STATUS
approved