login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127739
Triangle read by rows, in which row n contains the triangular number T(n) = A000217(n) repeated n times; smallest triangular number greater than or equal to n.
4
1, 3, 3, 6, 6, 6, 10, 10, 10, 10, 15, 15, 15, 15, 15, 21, 21, 21, 21, 21, 21, 28, 28, 28, 28, 28, 28, 28, 36, 36, 36, 36, 36, 36, 36, 36, 45, 45, 45, 45, 45, 45, 45, 45, 45, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66
OFFSET
1,2
COMMENTS
Seen as a sequence, these are the triangular numbers applied to the Kruskal-Macaulay function A123578. - Peter Luschny, Oct 29 2022
LINKS
Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
FORMULA
Central terms: T(2*n-1,n) = A000384(n). - Reinhard Zumkeller, Mar 18 2011
a(n) = A003057(n)*A002024(n)/2; a(n) = (t+2)*(t+1)/2, where t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Feb 08 2013
Sum_{n>=1} 1/a(n)^2 = 8 - 2*Pi^2/3. - Amiram Eldar, Aug 15 2022
a(n) = k(n)*(1 + k(n))/2 = A000217(A123578(n)), where k = A123578. - Peter Luschny, Oct 29 2022
EXAMPLE
First few rows of the triangle are:
1;
3, 3;
6, 6, 6;
10, 10, 10, 10;
15, 15, 15, 15, 15;
...
MAPLE
A127739 := proc(n) local t, s; t := 1; s := 0;
while t <= n do s := s + 1; t := t + s od; s*(1 + s)/2 end:
seq(A127739(n), n = 1..66); # Peter Luschny, Oct 29 2022
MATHEMATICA
Table[n(n+1)/2, {n, 100}, {n}]//Flatten (* Zak Seidov, Mar 19 2011 *)
PROG
(Haskell)
a127739 n k = a127739_tabl !! (n-1) !! (k-1)
a127739_row n = a127739_tabl !! (n-1)
a127739_tabl = zipWith ($) (map replicate [1..]) $ tail a000217_list
-- Reinhard Zumkeller, Feb 03 2012, Mar 18 2011
(PARI) A127739=n->binomial((sqrtint(8*n)+3)\2, 2) \\ M. F. Hasler, Mar 09 2014
(Python)
from math import isqrt
def A127739(n): return (r:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))*(r+1)>>1 # Chai Wah Wu, Nov 07 2024
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Jan 27 2007
EXTENSIONS
Name edited by Michel Marcus, Apr 30 2020
STATUS
approved