login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057944
Largest triangular number less than or equal to n; write m-th triangular number m+1 times.
18
0, 1, 1, 3, 3, 3, 6, 6, 6, 6, 10, 10, 10, 10, 10, 15, 15, 15, 15, 15, 15, 21, 21, 21, 21, 21, 21, 21, 28, 28, 28, 28, 28, 28, 28, 28, 36, 36, 36, 36, 36, 36, 36, 36, 36, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 66, 66, 66, 66, 66, 66
OFFSET
0,4
LINKS
FORMULA
a(n) = floor((sqrt(1+8*n)-1)/2)*floor((sqrt(1+8*n)+1)/2)/2 = (trinv(n)*(trinv(n)-1))/2 = A000217(A003056(n)) = n - A002262(n)
a(n) = (1/2)*t*(t-1), where t = floor(sqrt(2*n+1)+1/2) = A002024(n+1). - Ridouane Oudra, Oct 20 2019
Sum_{n>=1} 1/a(n)^2 = 2*Pi^2/3 - 4. - Amiram Eldar, Aug 14 2022
EXAMPLE
a(35) = 28 since 28 and 36 are successive triangular numbers and 28 <= 35 < 36.
MAPLE
A057944 := proc(n)
k := (-1+sqrt(1+8*n))/2 ;
k := floor(k) ;
k*(k+1)/2 ;
end proc; # R. J. Mathar, Nov 05 2011
MATHEMATICA
f[n_] := Block[{a = Floor@ Sqrt[1 + 8 n]}, Floor[(a - 1)/2]*Floor[(a + 1)/2]/2]; Array[f, 72, 0]
t0=0; t1=1; k=1; Table[If[n < t1, t0, k++; t0=t1; t1=t1+k; t0], {n, 0, 72}]
With[{nn=15}, Table[#[[1]], #[[2]]+1]&/@Thread[{Accumulate[Range[ 0, nn]], Range[ 0, nn]}]]//Flatten (* Harvey P. Dale, Mar 01 2020 *)
PROG
(Haskell)
a057944 n = a057944_list !! n -- common flat access
a057944_list = concat a057944_tabl
a057944' n k = a057944_tabl !! n !! k -- access when seen as a triangle
a057944_row n = a057944_tabl !! n
a057944_tabl = zipWith ($) (map replicate [1..]) a000217_list
-- Reinhard Zumkeller, Feb 03 2012
(PARI) a(n)=my(t=(sqrtint(8*n+7)-1)\2); t*(t+1)/2 \\ Charles R Greathouse IV, Jan 26 2013
(Python)
from math import comb, isqrt
def A057944(n): return comb((m:=isqrt(k:=n+1<<1))+(k>m*(m+1)), 2) # Chai Wah Wu, Nov 09 2024
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Henry Bottomley, Oct 05 2000
EXTENSIONS
Keyword tabl added by Reinhard Zumkeller, Feb 03 2012
STATUS
approved