Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #48 Nov 09 2024 00:46:46
%S 0,1,1,3,3,3,6,6,6,6,10,10,10,10,10,15,15,15,15,15,15,21,21,21,21,21,
%T 21,21,28,28,28,28,28,28,28,28,36,36,36,36,36,36,36,36,36,45,45,45,45,
%U 45,45,45,45,45,45,55,55,55,55,55,55,55,55,55,55,55,66,66,66,66,66,66
%N Largest triangular number less than or equal to n; write m-th triangular number m+1 times.
%H Reinhard Zumkeller, <a href="/A057944/b057944.txt">Rows n = 0..100 of triangle, flattened</a>
%F a(n) = floor((sqrt(1+8*n)-1)/2)*floor((sqrt(1+8*n)+1)/2)/2 = (trinv(n)*(trinv(n)-1))/2 = A000217(A003056(n)) = n - A002262(n)
%F a(n) = (1/2)*t*(t-1), where t = floor(sqrt(2*n+1)+1/2) = A002024(n+1). - _Ridouane Oudra_, Oct 20 2019
%F Sum_{n>=1} 1/a(n)^2 = 2*Pi^2/3 - 4. - _Amiram Eldar_, Aug 14 2022
%e a(35) = 28 since 28 and 36 are successive triangular numbers and 28 <= 35 < 36.
%p A057944 := proc(n)
%p k := (-1+sqrt(1+8*n))/2 ;
%p k := floor(k) ;
%p k*(k+1)/2 ;
%p end proc; # _R. J. Mathar_, Nov 05 2011
%t f[n_] := Block[{a = Floor@ Sqrt[1 + 8 n]}, Floor[(a - 1)/2]*Floor[(a + 1)/2]/2]; Array[f, 72, 0]
%t t0=0; t1=1; k=1; Table[If[n < t1, t0, k++; t0=t1; t1=t1+k; t0], {n, 0, 72}]
%t With[{nn=15},Table[#[[1]],#[[2]]+1]&/@Thread[{Accumulate[Range[ 0,nn]],Range[ 0,nn]}]]//Flatten (* _Harvey P. Dale_, Mar 01 2020 *)
%o (Haskell)
%o a057944 n = a057944_list !! n -- common flat access
%o a057944_list = concat a057944_tabl
%o a057944' n k = a057944_tabl !! n !! k -- access when seen as a triangle
%o a057944_row n = a057944_tabl !! n
%o a057944_tabl = zipWith ($) (map replicate [1..]) a000217_list
%o -- _Reinhard Zumkeller_, Feb 03 2012
%o (PARI) a(n)=my(t=(sqrtint(8*n+7)-1)\2);t*(t+1)/2 \\ _Charles R Greathouse IV_, Jan 26 2013
%o (Python)
%o from math import comb, isqrt
%o def A057944(n): return comb((m:=isqrt(k:=n+1<<1))+(k>m*(m+1)),2) # _Chai Wah Wu_, Nov 09 2024
%Y Cf. A000217, A003056, A056944, A057945, A127739.
%K easy,nonn,tabl
%O 0,4
%A _Henry Bottomley_, Oct 05 2000
%E Keyword tabl added by _Reinhard Zumkeller_, Feb 03 2012