login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057945
Number of triangular numbers needed to represent n with greedy algorithm.
13
0, 1, 2, 1, 2, 3, 1, 2, 3, 2, 1, 2, 3, 2, 3, 1, 2, 3, 2, 3, 4, 1, 2, 3, 2, 3, 4, 2, 1, 2, 3, 2, 3, 4, 2, 3, 1, 2, 3, 2, 3, 4, 2, 3, 4, 1, 2, 3, 2, 3, 4, 2, 3, 4, 3, 1, 2, 3, 2, 3, 4, 2, 3, 4, 3, 2, 1, 2, 3, 2, 3, 4, 2, 3, 4, 3, 2, 3, 1, 2, 3, 2, 3, 4, 2, 3, 4, 3, 2, 3, 4, 1, 2, 3, 2, 3, 4, 2, 3, 4, 3, 2, 3, 4, 3
OFFSET
0,3
COMMENTS
a(n) = sum of digits of A000462(n). - Reinhard Zumkeller, Mar 27 2011
The length of (number of moves in) Simon Norton's game in A006019 starting with an initial heap of n if both players always take, never put. - R. J. Mathar, May 13 2016
LINKS
FORMULA
a(0)=0, otherwise a(n)=a(A002262(n))+1.
EXAMPLE
a(35)=3 since 35=28+6+1
MAPLE
A057945 := proc(n)
local a, x;
a := 0 ;
x := n ;
while x > 0 do
x := x-A057944(x) ;
a := a+1 ;
end do:
a ;
end proc: # R. J. Mathar, May 13 2016
MATHEMATICA
A057944[n_] := With[{k = Floor[Sqrt[8n+1]]}, Floor[(k-1)/2]* Floor[(k+1)/2]/2];
a[n_] := Module[{k = 0, x = n}, While[x>0, x = x - A057944[x]; k++]; k];
Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Mar 10 2019, after R. J. Mathar *)
PROG
(Haskell)
a057945 n = g n $ reverse $ takeWhile (<= n) $ tail a000217_list where
g 0 _ = 0
g x (t:ts) = g r ts + a where (a, r) = divMod x t
-- Reinhard Zumkeller, Mar 27 2011
CROSSREFS
Cf. A000217, A002262, A056944, A057944. See A006893 for records.
Sequence in context: A023115 A194436 A061336 * A374438 A285730 A353655
KEYWORD
nonn
AUTHOR
Henry Bottomley, Oct 05 2000
STATUS
approved