%I #16 Mar 10 2019 08:35:50
%S 0,1,2,1,2,3,1,2,3,2,1,2,3,2,3,1,2,3,2,3,4,1,2,3,2,3,4,2,1,2,3,2,3,4,
%T 2,3,1,2,3,2,3,4,2,3,4,1,2,3,2,3,4,2,3,4,3,1,2,3,2,3,4,2,3,4,3,2,1,2,
%U 3,2,3,4,2,3,4,3,2,3,1,2,3,2,3,4,2,3,4,3,2,3,4,1,2,3,2,3,4,2,3,4,3,2,3,4,3
%N Number of triangular numbers needed to represent n with greedy algorithm.
%C a(n) = sum of digits of A000462(n). - _Reinhard Zumkeller_, Mar 27 2011
%C The length of (number of moves in) Simon Norton's game in A006019 starting with an initial heap of n if both players always take, never put. - _R. J. Mathar_, May 13 2016
%H Reinhard Zumkeller, <a href="/A057945/b057945.txt">Table of n, a(n) for n = 0..10000</a>
%F a(0)=0, otherwise a(n)=a(A002262(n))+1.
%e a(35)=3 since 35=28+6+1
%p A057945 := proc(n)
%p local a,x;
%p a := 0 ;
%p x := n ;
%p while x > 0 do
%p x := x-A057944(x) ;
%p a := a+1 ;
%p end do:
%p a ;
%p end proc: # _R. J. Mathar_, May 13 2016
%t A057944[n_] := With[{k = Floor[Sqrt[8n+1]]}, Floor[(k-1)/2]* Floor[(k+1)/2]/2];
%t a[n_] := Module[{k = 0, x = n}, While[x>0, x = x - A057944[x]; k++]; k];
%t Table[a[n], {n, 0, 104}] (* _Jean-François Alcover_, Mar 10 2019, after _R. J. Mathar_ *)
%o (Haskell)
%o a057945 n = g n $ reverse $ takeWhile (<= n) $ tail a000217_list where
%o g 0 _ = 0
%o g x (t:ts) = g r ts + a where (a,r) = divMod x t
%o -- _Reinhard Zumkeller_, Mar 27 2011
%Y Cf. A000217, A002262, A056944, A057944. See A006893 for records.
%K nonn
%O 0,3
%A _Henry Bottomley_, Oct 05 2000