OFFSET
1,1
COMMENTS
Factorization in S is not unique. See related sequences.
a(n) ~ C n log n / log log n, where C > 2. - Thomas Ordowski, Sep 09 2012
Kostrikin calls these numbers quasi-primes. - Arkadiusz Wesolowski, Aug 19 2017
a(n) is a prime of the form 4*n + 1 or a product of 2 primes of the form 4*n + 3. - David A. Corneth, Nov 10 2018
REFERENCES
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, page 101, problem 1.
A. I. Kostrikin, Introduction to Algebra, universitext, Springer, 1982.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Hilbert Number [From Eric W. Weisstein, Sep 15 2008]
EXAMPLE
21 is of the form 4i+1, but it is not divisible by any smaller S-primes, so 21 is in the sequence.
MAPLE
N:= 1000: # to get all terms <= N
S:= {seq(4*i+1, i=1..floor((N-1)/4))}:
for n from 1 while n <= nops(S) do
r:= S[n];
S:= S minus {seq(i*r, i=2..floor(N/r))};
od:
S; # Robert Israel, Dec 14 2014
MATHEMATICA
nn = 100; Complement[Table[4 k + 1, {k, 1, nn}], Union[Flatten[ Table[Table[(4 k + 1) (4 j + 1), {k, 1, j}], {j, 1, nn}]]]] (* Geoffrey Critzer, Dec 14 2014 *)
PROG
(PARI) is(n) = if(n % 2 == 0, return(0)); if(n%4 == 1 && isprime(n), return(1)); f = factor(n); if(vecsum(f[, 2]) != 2, return(0)); for(i = 1, #f[, 1], if(f[i, 1] % 4 == 1, return(0))); n>1 \\ David A. Corneth, Nov 10 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Jud McCranie, Oct 14 2000
EXTENSIONS
Offset corrected by Charlie Neder, Nov 03 2018
STATUS
approved