login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A057948
S-primes: let S = {1,5,9, ... 4i+1, ...}; then an S-prime is in S but is not divisible by any members of S except itself and 1.
10
5, 9, 13, 17, 21, 29, 33, 37, 41, 49, 53, 57, 61, 69, 73, 77, 89, 93, 97, 101, 109, 113, 121, 129, 133, 137, 141, 149, 157, 161, 173, 177, 181, 193, 197, 201, 209, 213, 217, 229, 233, 237, 241, 249, 253, 257, 269, 277, 281, 293, 301, 309, 313, 317, 321, 329
OFFSET
1,1
COMMENTS
Factorization in S is not unique. See related sequences.
a(n) ~ C n log n / log log n, where C > 2. - Thomas Ordowski, Sep 09 2012
Kostrikin calls these numbers quasi-primes. - Arkadiusz Wesolowski, Aug 19 2017
Union of A002144 and A107978. - Charlie Neder, Nov 03 2018
a(n) is a prime of the form 4*n + 1 or a product of 2 primes of the form 4*n + 3. - David A. Corneth, Nov 10 2018
REFERENCES
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, page 101, problem 1.
A. I. Kostrikin, Introduction to Algebra, universitext, Springer, 1982.
LINKS
Eric Weisstein's World of Mathematics, Hilbert Number [From Eric W. Weisstein, Sep 15 2008]
EXAMPLE
21 is of the form 4i+1, but it is not divisible by any smaller S-primes, so 21 is in the sequence.
MAPLE
N:= 1000: # to get all terms <= N
S:= {seq(4*i+1, i=1..floor((N-1)/4))}:
for n from 1 while n <= nops(S) do
r:= S[n];
S:= S minus {seq(i*r, i=2..floor(N/r))};
od:
S; # Robert Israel, Dec 14 2014
MATHEMATICA
nn = 100; Complement[Table[4 k + 1, {k, 1, nn}], Union[Flatten[ Table[Table[(4 k + 1) (4 j + 1), {k, 1, j}], {j, 1, nn}]]]] (* Geoffrey Critzer, Dec 14 2014 *)
PROG
(PARI) is(n) = if(n % 2 == 0, return(0)); if(n%4 == 1 && isprime(n), return(1)); f = factor(n); if(vecsum(f[, 2]) != 2, return(0)); for(i = 1, #f[, 1], if(f[i, 1] % 4 == 1, return(0))); n>1 \\ David A. Corneth, Nov 10 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Jud McCranie, Oct 14 2000
EXTENSIONS
Offset corrected by Charlie Neder, Nov 03 2018
STATUS
approved