login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A054520
Let S = {1,5,9,13,..., 4n+1, ...} and call p in S an S-prime if p>1 and the only divisors of p in S are 1 and p; sequence gives elements of S that are not S-primes.
9
1, 25, 45, 65, 81, 85, 105, 117, 125, 145, 153, 165, 169, 185, 189, 205, 221, 225, 245, 261, 265, 273, 285, 289, 297, 305, 325, 333, 345, 357, 365, 369, 377, 385, 405, 425, 429, 441, 445, 465, 477, 481, 485, 493, 505, 513, 525, 533, 545, 549, 561, 565, 585
OFFSET
1,2
COMMENTS
The set S is a standard example of a set where unique factorization does not hold.
With the exception a(1)=1, numbers of the form 4*(m + n + 4*m*n)+1 (m,n>0). No such number can be prime because 4*(m + n + 4*m*n)+1=(4m+1)*(4n+1). - Artur Jasinski, Sep 22 2008
REFERENCES
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, page 101, problem 1.
LINKS
Eric Weisstein's World of Mathematics, Hilbert Number
EXAMPLE
49 is an S-prime.
MATHEMATICA
a = {}; Do[Do[AppendTo[a, 4(m + n + 4 m n)+1], {m, 1, 100}], {n, 1, 100}]; Union[a] (* Artur Jasinski, Sep 22 2008 *)
PROG
(PARI) ok(n)={if(n%4==1, my(f=factor(n)); 2<>sum(i=1, #f~, f[i, 2]*if(f[i, 1]%4==3, 1, 2)), 0)} \\ Andrew Howroyd, Nov 25 2018
CROSSREFS
KEYWORD
nonn,nice,easy,changed
AUTHOR
N. J. A. Sloane, Apr 09 2000
EXTENSIONS
More terms from James A. Sellers, Apr 11 2000
Offset corrected by Andrew Howroyd, Nov 25 2018
STATUS
approved