The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054519 Number of increasing arithmetic progressions of nonnegative integers ending in n, including those of length 1 or 2. 24
 1, 2, 4, 6, 9, 11, 15, 17, 21, 24, 28, 30, 36, 38, 42, 46, 51, 53, 59, 61, 67, 71, 75, 77, 85, 88, 92, 96, 102, 104, 112, 114, 120, 124, 128, 132, 141, 143, 147, 151, 159, 161, 169, 171, 177, 183, 187, 189, 199, 202, 208, 212, 218, 220, 228, 232, 240, 244, 248 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(0)=1, a(n) = a(n-1) + sigma_0(n) (A000005). - Ctibor O. Zizka, Nov 08 2008 a(n) is the index of the n-th term of A027750 whose value is 1. - Michel Marcus, Oct 15 2015 From Gus Wiseman, Jun 07 2019: (Start) Also the number of subsets of {1..n} that are closed under taking the difference of two strictly decreasing terms. For example, the a(0) = 1 through a(6) = 15 subsets are: {} {} {} {} {} {} {} {1} {1} {1} {1} {1} {1} {2} {2} {2} {2} {2} {1,2} {3} {3} {3} {3} {1,2} {4} {4} {4} {1,2,3} {1,2} {5} {5} {2,4} {1,2} {6} {1,2,3} {2,4} {1,2} {1,2,3,4} {1,2,3} {2,4} {1,2,3,4} {3,6} {1,2,3,4,5} {1,2,3} {2,4,6} {1,2,3,4} {1,2,3,4,5} {1,2,3,4,5,6} (End) LINKS Marius A. Burtea, Table of n, a(n) for n = 0..10000 (term 0..1000 from T. D. Noe). Wikipedia, Arithmetic progression FORMULA a(n) = A051336(n+1) - A051336(n) = a(n-1) + A000005(n) = A006218(n)+1. G.f.: (1-x)^(-1) * (1 + Sum_{j>=1} x^j/(1-x^j)). - Robert Israel, Oct 15 2015 a(n) = Sum_{i=1..n+1} ceiling((n+1)/(i+1)). - Wesley Ivan Hurt, Sep 15 2017 EXAMPLE a(3)=6 because the six increasing progressions (3), (2,3), (1,2,3), (0,1,2,3), (1,3) and (0,3) all end in 3. MAPLE IBI:= {{}}: a[0]:= 1: for n from 1 to 45 do IBI:= IBI union map(t -> t union {n}, select(t -> (t minus map(q -> n-q, t)={}), IBI)); a[n]:= nops(IBI) od: seq(a[n], n=0..45); # Zerinvary Lajos, Mar 18 2007 with(numtheory):a[1]:=2: for n from 2 to 59 do a[n]:=a[n-1]+tau(n) od: seq(a[n], n=0..45); # Zerinvary Lajos, Mar 21 2009 map(`+`, ListTools:-PartialSums(map(numtheory:-tau, [\$0..1000])), 1); # Robert Israel, Oct 15 2015 MATHEMATICA a[0]=1; a[n_] := a[n] = a[n-1] + DivisorSigma[0, n]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Oct 05 2012, after Ctibor O. Zizka *) nxt[{n_, a_}]:={n+1, a+DivisorSigma[0, n+1]}; Transpose[NestList[nxt, {0, 1}, 50]][[2]] (* Harvey P. Dale, Oct 15 2012 *) Table[Length[Select[Subsets[Range[n]], SubsetQ[#, Subtract@@@Reverse/@Subsets[#, {2}]]&]], {n, 0, 10}] (* Gus Wiseman, Jun 07 2019 *) PROG (PARI) vector(100, n, n--; sum(k=1, n, n\k) + 1) \\ Altug Alkan, Oct 15 2015 (Magma) [1] cat [&+[Ceiling((k+1)/(i+1)): i in [1..k+1]]: k in [1..60]]; // Marius A. Burtea, Jun 10 2019 CROSSREFS Cf. A000005, A006218, A027750, A051336. Left edge of A056535. Cf. A007862, A049988, A175342, A238423, A295370, A325849. Sequence in context: A022760 A347778 A164286 * A168434 A300416 A353134 Adjacent sequences: A054516 A054517 A054518 * A054520 A054521 A054522 KEYWORD easy,nonn,nice AUTHOR Henry Bottomley, Apr 07 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 12:41 EST 2023. Contains 367656 sequences. (Running on oeis4.)