The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A049988 Number of nondecreasing arithmetic progressions of positive integers with sum n. 66
 1, 1, 2, 3, 4, 4, 7, 5, 7, 9, 9, 7, 14, 8, 11, 16, 13, 10, 20, 11, 17, 21, 16, 13, 27, 17, 18, 26, 22, 16, 35, 17, 23, 31, 23, 25, 41, 20, 25, 36, 33, 22, 46, 23, 31, 48, 30, 25, 52, 29, 38, 47, 36, 28, 57, 37, 41, 52, 37, 31, 71, 32, 39, 62, 44, 43, 69, 35, 45, 62, 57, 37, 79, 38 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS From Gus Wiseman, May 03 2019: (Start) a(n) is the number of integer partitions of n with equal differences. The Heinz numbers of these partitions are given by A325328. For example, the a(1) = 1 through a(9) = 9 partitions are:   1   2    3     4      5       6        7         8          9       11   21    22     32      33       43        44         54            111   31     41      42       52        53         63                  1111   11111   51       61        62         72                                 222      1111111   71         81                                 321                2222       333                                 111111             11111111   432                                                               531                                                               111111111 (End) From Petros Hadjicostas, Sep 29 2019: (Start) We show how Leroy Quet's g.f. Sum_{n >= 0} a(n)*x^n = 1/(1-x) + Sum_{k >= 2} x^k/(1-x^(k*(k-1)/2))/(1-x^k) in the Formula section below can be derived from Graeme McRae's g.f. for A049982 (see one of the links below). Let b(n) = A049982(n) for n >= 1. Then Graeme McRae proved that Sum_{n >= 1} b(n)*x^n = Sum_{k >= 2} x^t(k)/(x^t(k) - x^t(k-1) - x^k + 1) = Sum_{k >= 2} x^t(k)/((1 - x^k) * (1 - x^t(k-1))), where t(k) = A000217(k) = k*(k+1)/2. Since a(n) - b(n) = A000005(n) for n >= 1, to finish the proof, we only need to show that K(x) := 1 + Sum_{n >= 1} a(n)*x^n - Sum_{n >= 1} b(n)*x^n is the g.f. of A000005 (= number of divisors). But it is easy to show that K(x) = 1 + Sum_{k >= 1} x^k/(1 - x^k) = 1 + Sum_{n >= 1} A000005(n)*x^n (Lambert series for the number of divisors function). (End) LINKS Lars Blomberg, Table of n, a(n) for n = 0..10000 (Corrected by Gus Wiseman, May 03 2019) Lars Blomberg, C# program for calculating b-file (needs to be updated for a(0) = 1 - Gus Wiseman, May 07 2019). Sadek Bouroubi and Nesrine Benyahia Tani, Integer partitions into arithmetic progressions, Rostok. Math. Kolloq. 64 (2009), 11-16. Sadek Bouroubi and Nesrine Benyahia Tani, Integer partitions into arithmetic progressions with an odd common difference, Integers 9(1) (2009), 77-81. F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020. F. Javier de Vega, A Complete Solution of the Partitions of a Number into Arithmetic Progressions, arXiv:2004.09505 [math.NT], 2020. Graeme McRae, Counting arithmetic sequences whose sum is n. Graeme McRae, Counting arithmetic sequences whose sum is n [Cached copy] Augustine O. Munagi, Combinatorics of integer partitions in arithmetic progression, Integers 10(1) (2010), 73-82. Augustine O. Munagi and Temba Shonhiwa, On the partitions of a number into arithmetic progressions, Journal of Integer Sequences 11 (2008), Article 08.5.4. Wikipedia, Arithmetic progression. Wikipedia, Lambert series. FORMULA G.f.: 1/(1-x) + Sum_{k>=2} x^k/(1-x^(k*(k-1)/2))/(1-x^k). - Leroy Quet, Apr 08 2010. [Edited by Gus Wiseman, May 03 2019] a(n) = A049982(n) + A000005(n) = A049980(n) + A000005(n) - 1 for n >= 1. - Petros Hadjicostas, Sep 28 2019 MATHEMATICA a[n_]:=If[n==0, 1, Block[{i, c=Floor[(n-1)/2]+DivisorSigma[0, n]}, Do[i=1; While[i*k

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 06:56 EDT 2021. Contains 346273 sequences. (Running on oeis4.)