Math Help \rightarrow Basic Principles \rightarrow Sequences \rightarrow A049982
A049982 is the number of arithmetic progressions of 2 or more positive integers, strictly increasing with sum n .
When I stumbled on this sequence (and it's brothers and sisters, with various slightly different qualifications), I noticed a complete lack of any formulas or generating functions that help understand the sequence. So I did some amateur investigation on my own.
 for reasons that will become clear later.
 clear later.
 $0,3,0,3,0,4,0,3, \ldots$ This has generating function $x^{10} /\left(x^{10}-x^{6}-x^{4}+1\right)$
 After a while, I had a little table that shows the
generating function for the sequence of the number of arithmetic progressions of k positive integers, strictly increasing with sum n :

k	Generating Function
2	$x^{3} /\left(x^{3}-x-x^{2}+1\right)$
3	$x^{6} /\left(x^{6}-x^{3}-x^{3}+1\right)$
4	$x^{10} /\left(x^{10}-x^{6}-x^{4}+1\right)$
5	$x^{15} /\left(x^{15}-x^{10}-x^{5}+1\right)$
6	$x^{21} /\left(x^{21}-x^{15}-x^{6}+1\right)$
7	$x^{28} /\left(x^{28}-x^{21}-x^{7}+1\right)$
8	$x^{36} /\left(x^{36} \cdot x^{28}-x^{8}+1\right)$
9	$x^{45} /\left(x^{45}-x^{36}-x^{9}+1\right)$
10	$x^{55} /\left(x^{55}-x^{45}-x^{10}+1\right)$
11	$x^{66} /\left(x^{66}-x^{55}-x^{11}+1\right)$

Now, maybe you can see why I wrote the terms for $\mathrm{k}=2$ and $\mathrm{k}=3$ in such a funny way. In general, the generating function for the sequence of the number of arithmetic progressions of k positive integers, strictly increasing with sum n is:
$x^{t(k)} /\left(x^{t(k)}-x^{t(k-1)}-x^{k}+1\right)$, where $t(k)$ is the $k^{\prime t}$ th triangular number

Summary

A049982 has generating function $x^{3} /\left(x^{3}-x-x^{2}+1\right)+x^{6} /\left(x^{6}-x^{3}-x^{3}+1\right)+x^{10} /\left(x^{10}-x^{6}-x^{4}+1\right)+\ldots$ which is the
sum $k=2,3 \ldots$ of $\left.x^{t(k)} /\left(x^{t(k)}\right) x^{t(k-1)}-x^{k}+1\right)$, where $t(k)$ is the $k^{\text {th }}$ triangular number
Term k of this generating function generates the number of arithmetic progressions of k positive integers, strictly increasing with sum n .
Internet References
A049982 -- The Online Encyclopedia of Integer Sequences.

Related pages in this website

See also Recurrence Relation

