login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049986 a(n) is the number of arithmetic progressions of 4 or more positive integers, strictly increasing with sum n. 17
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 2, 1, 2, 0, 1, 2, 2, 1, 3, 0, 4, 0, 2, 1, 3, 4, 4, 0, 3, 1, 6, 0, 5, 0, 4, 6, 4, 0, 4, 2, 8, 2, 5, 0, 6, 6, 6, 2, 5, 0, 11, 0, 5, 5, 6, 7, 8, 0, 6, 2, 15, 0, 9, 0, 6, 10, 7, 4, 9, 0, 14, 5, 7, 0, 12, 9, 7, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,20

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..12580

Sadek Bouroubi and Nesrine Benyahia Tani, Integer partitions into arithmetic progressions, Rostok. Math. Kolloq. 64 (2009), 11-16.

Sadek Bouroubi and Nesrine Benyahia Tani, Integer partitions into arithmetic progressions with an odd common difference, Integers 9(1) (2009), 77-81.

Jon Maiga, Computer-generated formulas for A049986, Sequence Machine.

Graeme McRae, Counting arithmetic sequences whose sum is n.

Graeme McRae, Counting arithmetic sequences whose sum is n [Cached copy]

Augustine O. Munagi, Combinatorics of integer partitions in arithmetic progression, Integers 10(1) (2010), 73-82.

Augustine O. Munagi and Temba Shonhiwa, On the partitions of a number into arithmetic progressions, Journal of Integer Sequences 11 (2008), Article 08.5.4.

A. N. Pacheco Pulido, Extensiones lineales de un poset y composiciones de números multipartitos, Maestría thesis, Universidad Nacional de Colombia, 2012.

FORMULA

G.f.: Sum_{k >= 4} x^t(k)/(x^t(k) - x^t(k-1) - x^k + 1) = Sum_{k >= 4} x^t(k)/(1 - x^k)*(1 - x^t(k-1))), where t(k) = k*(k+1)/2 = A000217(k) is the k-th triangular number [Graeme McRae]. - Petros Hadjicostas, Sep 29 2019

a(n) = A049994(n) - A321014(n). [Listed by Sequence Machine and obviously true] - Antti Karttunen, Feb 20 2023

PROG

(PARI)

\\ Needs also code from A014405 and A023645:

A049994(n) = (A014405(n) + A023645(n) - if(n%3, 0, n/3));

A321014(n) = (numdiv(n) - 3 + !!(n%2) + !!(n%3)); \\ From A321014.

A049986(n) = (A049994(n)-A321014(n)); \\ Antti Karttunen, Feb 20 2023

CROSSREFS

Cf. A014405, A014406, A049980, A049981, A049982, A049983, A049987 (partial sums), A049988, A049989, A049990, A049991, A049994, A127938, A321014.

Sequence in context: A114004 A306518 A333310 * A218797 A137289 A211359

Adjacent sequences: A049983 A049984 A049985 * A049987 A049988 A049989

KEYWORD

nonn

AUTHOR

Clark Kimberling

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 20 18:36 EDT 2023. Contains 361391 sequences. (Running on oeis4.)