login
A049994
a(n) is the number of arithmetic progressions of 4 or more positive integers, nondecreasing with sum n.
4
0, 0, 0, 1, 1, 1, 1, 2, 1, 3, 1, 3, 1, 3, 3, 4, 1, 4, 1, 6, 3, 4, 1, 6, 4, 4, 3, 7, 1, 9, 1, 6, 3, 5, 7, 10, 1, 5, 3, 12, 1, 10, 1, 8, 10, 6, 1, 11, 4, 12, 4, 9, 1, 11, 9, 12, 4, 7, 1, 20, 1, 7, 9, 11, 10, 13, 1, 10, 4, 21, 1, 18, 1, 8, 14, 11, 7, 14, 1, 22, 8, 9, 1, 21, 12, 9, 5, 15, 1, 29, 8
OFFSET
1,8
LINKS
Sadek Bouroubi and Nesrine Benyahia Tani, Integer partitions into arithmetic progressions, Rostok. Math. Kolloq. 64 (2009), 11-16.
Sadek Bouroubi and Nesrine Benyahia Tani, Integer partitions into arithmetic progressions with an odd common difference, Integers 9(1) (2009), 77-81.
Jon Maiga, Computer-generated formulas for A049994, Sequence Machine.
Augustine O. Munagi, Combinatorics of integer partitions in arithmetic progression, Integers 10(1) (2010), 73-82.
Augustine O. Munagi and Temba Shonhiwa, On the partitions of a number into arithmetic progressions, Journal of Integer Sequences 11 (2008), Article 08.5.4.
A. N. Pacheco Pulido, Extensiones lineales de un poset y composiciones de números multipartitos, Maestría thesis, Universidad Nacional de Colombia, 2012.
FORMULA
G.f.: Sum_{k >= 4} x^k/(1-x^(k*(k-1)/2))/(1-x^k). [Leroy Quet from A049988] - Petros Hadjicostas, Sep 29 2019
a(n) = A049992(n) - A175676(n) = A049986(n) + A321014(n). [Two of the formulas listed by Sequence Machine, both obviously true] - Antti Karttunen, Feb 20 2023
PROG
(PARI) A049994(n) = (A049992(n)-if(n%3, 0, n/3)); \\ Antti Karttunen, Feb 20 2023
KEYWORD
nonn
EXTENSIONS
More terms from Petros Hadjicostas, Sep 29 2019
STATUS
approved