login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A211359
Triangle read by rows: T(n,k) is the number of noncrossing partitions up to rotation and reflection of an n-set that contain k singleton blocks.
5
1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 2, 0, 1, 2, 3, 2, 2, 0, 1, 5, 4, 8, 3, 3, 0, 1, 6, 11, 12, 12, 4, 3, 0, 1, 14, 21, 39, 24, 22, 5, 4, 0, 1, 22, 55, 84, 85, 48, 30, 7, 4, 0, 1, 51, 124, 245, 228, 190, 82, 46, 8, 5, 0, 1, 95, 327, 620, 730, 570, 350, 136, 60
OFFSET
0,11
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1274 (terms 0..90 from Tilman Piesk)
EXAMPLE
From Andrew Howroyd, May 02 2018: (Start)
Triangle begins:
1;
0, 1;
1, 0, 1;
1, 1, 0, 1;
2, 1, 2, 0, 1;
2, 3, 2, 2, 0, 1;
5, 4, 8, 3, 3, 0, 1;
6, 11, 12, 12, 4, 3, 0, 1;
14, 21, 39, 24, 22, 5, 4, 0, 1;
22, 55, 84, 85, 48, 30, 7, 4, 0, 1;
51, 124, 245, 228, 190, 82, 46, 8, 5, 0, 1;
...
(End)
PROG
(PARI) \\ See A303875 for NCPartitionsModDihedral
{ my(rows=Vec(NCPartitionsModDihedral(vector(10, k, if(k==1, y, 1)))));
for(n=1, #rows, for(k=0, n-1, print1(polcoeff(rows[n], k), ", ")); print; ) } \\ Andrew Howroyd, May 02 2018
CROSSREFS
Column k=0 is A303931.
Row sums are A111275.
Sequence in context: A049986 A218797 A137289 * A211357 A238416 A370852
KEYWORD
nonn,tabl
AUTHOR
Tilman Piesk, Apr 12 2012
STATUS
approved