login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A054516
Equivalent of the Kurepa hypothesis for left factorial.
2
0, 2, 2, 6, -4, 50, -258, 1862, -14824, 133506, -1334950, 14684582, -176214828, 2290792946, -32071101034, 481066515750, -7697064251728, 130850092279682, -2355301661033934, 44750731559645126, -895014631192902100, 18795307255050944562, -413496759611120779858
OFFSET
3,2
LINKS
Romeo Mestrovic, Variations of Kurepa's left factorial hypothesis, arXiv:1312.7037 [math.NT], 2013.
Romeo Mestrovic, The Kurepa-Vandermonde matrices arising from Kurepa's left factorial hypothesis, Filomat 29:10 (2015), 2207-2215; DOI 10.2298/FIL1510207M.
A. Petojevic, M. Zizovic, Trees and the Kurepa hypothesis for left factorial, Filomat (Nis), (1999), 31-40.
FORMULA
a(3) = 0, a(n) = -(n-3)*a(n-1) + (n-3)*(n-2).
Conjecture: (-n+4)*a(n) + (-n^2+8*n-14)*a(n-1) + (n-2)*(n-4)*a(n-2) = 0. - R. J. Mathar, Jan 31 2014
MATHEMATICA
(* Assuming offset 0 *)
Table[(-1)^n*n*((-1)^n - Subfactorial[n - 1]), {n, 0, 20}] (* Peter Luschny, Dec 30 2016 *)
RecurrenceTable[{a[n]+(n-3)*a[n-1]==(n-2)*(n-3), a[3]==0}, a, {n, 3, 30}] (* G. C. Greubel, Mar 30 2019 *)
PROG
(PARI) m=30; v=concat([0], vector(m-1)); for(n=2, m, v[n]=-(n-1)*v[n-1] + n*(n-1)); v \\ G. C. Greubel, Mar 30 2019
(Magma) [n eq 3 select 0 else -(n-3)*Self(n-3) + (n-2)*(n-3): n in [3..30]]; // G. C. Greubel, Mar 30 2019
(Sage)
@CachedFunction
def Self(n):
if n == 3 : return 0
return -(n-3)*Self(n-1) + (n-2)*(n-3)
[Self(n) for n in (3..30)] # G. C. Greubel, Mar 30 2019
CROSSREFS
Sequence in context: A259882 A356187 A204991 * A062400 A375851 A064766
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
More terms from James A. Sellers, Apr 09 2000
STATUS
approved