login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054516
Equivalent of the Kurepa hypothesis for left factorial.
2
0, 2, 2, 6, -4, 50, -258, 1862, -14824, 133506, -1334950, 14684582, -176214828, 2290792946, -32071101034, 481066515750, -7697064251728, 130850092279682, -2355301661033934, 44750731559645126, -895014631192902100, 18795307255050944562, -413496759611120779858
OFFSET
3,2
LINKS
Romeo Mestrovic, Variations of Kurepa's left factorial hypothesis, arXiv:1312.7037 [math.NT], 2013.
Romeo Mestrovic, The Kurepa-Vandermonde matrices arising from Kurepa's left factorial hypothesis, Filomat 29:10 (2015), 2207-2215; DOI 10.2298/FIL1510207M.
A. Petojevic, M. Zizovic, Trees and the Kurepa hypothesis for left factorial, Filomat (Nis), (1999), 31-40.
FORMULA
a(3) = 0, a(n) = -(n-3)*a(n-1) + (n-3)*(n-2).
Conjecture: (-n+4)*a(n) + (-n^2+8*n-14)*a(n-1) + (n-2)*(n-4)*a(n-2) = 0. - R. J. Mathar, Jan 31 2014
MATHEMATICA
(* Assuming offset 0 *)
Table[(-1)^n*n*((-1)^n - Subfactorial[n - 1]), {n, 0, 20}] (* Peter Luschny, Dec 30 2016 *)
RecurrenceTable[{a[n]+(n-3)*a[n-1]==(n-2)*(n-3), a[3]==0}, a, {n, 3, 30}] (* G. C. Greubel, Mar 30 2019 *)
PROG
(PARI) m=30; v=concat([0], vector(m-1)); for(n=2, m, v[n]=-(n-1)*v[n-1] + n*(n-1)); v \\ G. C. Greubel, Mar 30 2019
(Magma) [n eq 3 select 0 else -(n-3)*Self(n-3) + (n-2)*(n-3): n in [3..30]]; // G. C. Greubel, Mar 30 2019
(Sage)
@CachedFunction
def Self(n):
if n == 3 : return 0
return -(n-3)*Self(n-1) + (n-2)*(n-3)
[Self(n) for n in (3..30)] # G. C. Greubel, Mar 30 2019
CROSSREFS
Sequence in context: A259882 A356187 A204991 * A062400 A375851 A064766
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
More terms from James A. Sellers, Apr 09 2000
STATUS
approved