login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Equivalent of the Kurepa hypothesis for left factorial.
2

%I #27 Sep 16 2022 15:27:10

%S 0,2,2,6,-4,50,-258,1862,-14824,133506,-1334950,14684582,-176214828,

%T 2290792946,-32071101034,481066515750,-7697064251728,130850092279682,

%U -2355301661033934,44750731559645126,-895014631192902100,18795307255050944562,-413496759611120779858

%N Equivalent of the Kurepa hypothesis for left factorial.

%H G. C. Greubel, <a href="/A054516/b054516.txt">Table of n, a(n) for n = 3..450</a>

%H Romeo Mestrovic, <a href="http://arxiv.org/abs/1312.7037">Variations of Kurepa's left factorial hypothesis</a>, arXiv:1312.7037 [math.NT], 2013.

%H Romeo Mestrovic, <a href="https://doi.org/10.2298/FIL1510207M">The Kurepa-Vandermonde matrices arising from Kurepa's left factorial hypothesis</a>, Filomat 29:10 (2015), 2207-2215; DOI 10.2298/FIL1510207M.

%H A. Petojevic, M. Zizovic, <a href="http://elib.mi.sanu.ac.rs/files/journals/flmt/14/flmn14p31-40.pdf">Trees and the Kurepa hypothesis for left factorial</a>, Filomat (Nis), (1999), 31-40.

%F a(3) = 0, a(n) = -(n-3)*a(n-1) + (n-3)*(n-2).

%F Conjecture: (-n+4)*a(n) + (-n^2+8*n-14)*a(n-1) + (n-2)*(n-4)*a(n-2) = 0. - _R. J. Mathar_, Jan 31 2014

%t (* Assuming offset 0 *)

%t Table[(-1)^n*n*((-1)^n - Subfactorial[n - 1]), {n,0,20}] (* _Peter Luschny_, Dec 30 2016 *)

%t RecurrenceTable[{a[n]+(n-3)*a[n-1]==(n-2)*(n-3), a[3]==0}, a, {n,3,30}] (* _G. C. Greubel_, Mar 30 2019 *)

%o (PARI) m=30; v=concat([0], vector(m-1)); for(n=2, m, v[n]=-(n-1)*v[n-1] + n*(n-1)); v \\ _G. C. Greubel_, Mar 30 2019

%o (Magma) [n eq 3 select 0 else -(n-3)*Self(n-3) + (n-2)*(n-3): n in [3..30]]; // _G. C. Greubel_, Mar 30 2019

%o (Sage)

%o @CachedFunction

%o def Self(n):

%o if n == 3 : return 0

%o return -(n-3)*Self(n-1) + (n-2)*(n-3)

%o [Self(n) for n in (3..30)] # _G. C. Greubel_, Mar 30 2019

%K sign,easy

%O 3,2

%A _Aleksandar Petojevic_, Apr 09 2000

%E More terms from _James A. Sellers_, Apr 09 2000