login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353655
Number of terms in the Fibonacci-Lucas representation of n.
5
1, 1, 1, 2, 1, 2, 3, 1, 2, 3, 2, 2, 1, 2, 3, 2, 2, 3, 3, 2, 1, 2, 3, 2, 2, 3, 3, 2, 3, 3, 3, 2, 3, 1, 2, 3, 2, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 4, 3, 4, 2, 3, 3, 1, 2, 3, 2, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 4, 3, 4, 2, 3, 3, 3, 4, 3, 4, 5, 3, 4, 5, 2, 3, 3
OFFSET
1,4
COMMENTS
The Fibonacci-Lucas representation of n, denoted by FL(n), is defined for n>=1 as the sum t(1) + t(2) + ... + t(k), where t(1) is the greatest Fibonacci number (A000045(n), with n>=2) that is <= n, and t(2) is the greatest Lucas number (A000032(n), with n >= 1) that is <= n - t(1), and so on; that is, the greedy algorithm is applied to find successive greatest Fibonacci and Lucas numbers, in alternating order, with sum n. (See Example.)
EXAMPLE
n FL(n)
1 = 1
2 = 2
3 = 3
4 = 3 + 1
5 = 5
6 = 5 + 1
33 = 21 + 11 + 1
47 = 34 + 11 + 2
83 = 55 + 18 + 8 + 1 + 1
MATHEMATICA
z = 120; fib = Map[Fibonacci, Range[2, 51]];
luc = Map[LucasL, Range[1, 50]];
t = Map[(n = #; fl = {}; f = 0; l = 0;
While[IntegerQ[l], n = n - f - l;
f = fib[[NestWhile[# + 1 &, 1, fib[[#]] <= n &] - 1]];
l = luc[[NestWhile[# + 1 &, 1, luc[[#]] <= n - f &] - 1]];
AppendTo[fl, {f, l}]];
{Total[#], #} &[Select[Flatten[fl], IntegerQ]]) &, Range[z]];
u = Take[Map[Last, t], z];
u1 = Map[Length, u] (* A353655 *)
t = Map[(n = #; lf = {}; f = 0; l = 0;
While[IntegerQ[f], n = n - l - f;
l = luc[[NestWhile[# + 1 &, 1, luc[[#]] <= n &] - 1]];
f = fib[[NestWhile[# + 1 &, 1, fib[[#]] <= n - l &] - 1]];
AppendTo[lf, {l, f}]];
{Total[#], #} &[Select[Flatten[lf], IntegerQ]]) &, Range[z]];
v = Take[Map[Last, t], z];
v1 = Map[Length, v] (* A353656 *)
u1 - v1 (* A353657 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 02 2022
STATUS
approved