login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353656
Number of terms in the Lucas-Fibonacci representation of n.
5
1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 3, 2, 3, 1, 2, 2, 2, 3, 2, 3, 4, 2, 3, 4, 1, 2, 2, 2, 3, 2, 3, 4, 2, 3, 4, 3, 3, 2, 3, 4, 3, 3, 1, 2, 2, 2, 3, 2, 3, 4, 2, 3, 4, 3, 3, 2, 3, 4, 3, 3, 4, 4, 3, 2, 3, 4, 3, 3, 4, 4, 3, 1, 2, 2, 2, 3, 2, 3, 4, 2, 3, 4
OFFSET
1,2
COMMENTS
The Lucas-Fibonacci representation of n, denoted by LF(n), is defined for n>=1 as the sum t(1) + t(2) + ... + t(k), where t(1) is the greatest Lucas number (A000032(n), with n >= 1) that is <= n, and t(2) is the greatest Fibonacci number (A000045(n), with n >= 2) that is <= n - t(1), and so on; that is, the greedy algorithm is applied to find successive greatest Lucas and Fibonacci numbers, in alternating order, with sum n. (See Example.)
EXAMPLE
n LF(n)
1 = 1
2 = 1 + 1
3 = 3
4 = 4
5 = 4 + 1
6 = 4 + 2
17 = 11 + 5 + 1
66 = 47 + 13 + 4 + 2
MATHEMATICA
z = 120; fib = Map[Fibonacci, Range[2, 51]];
luc = Map[LucasL, Range[1, 50]];
t = Map[(n = #; fl = {}; f = 0; l = 0;
While[IntegerQ[l], n = n - f - l;
f = fib[[NestWhile[# + 1 &, 1, fib[[#]] <= n &] - 1]];
l = luc[[NestWhile[# + 1 &, 1, luc[[#]] <= n - f &] - 1]];
AppendTo[fl, {f, l}]];
{Total[#], #} &[Select[Flatten[fl], IntegerQ]]) &, Range[z]];
u = Take[Map[Last, t], z];
u1 = Map[Length, u] (* A353655 *)
t = Map[(n = #; lf = {}; f = 0; l = 0;
While[IntegerQ[f], n = n - l - f;
l = luc[[NestWhile[# + 1 &, 1, luc[[#]] <= n &] - 1]];
f = fib[[NestWhile[# + 1 &, 1, fib[[#]] <= n - l &] - 1]];
AppendTo[lf, {l, f}]];
{Total[#], #} &[Select[Flatten[lf], IntegerQ]]) &, Range[z]];
v = Take[Map[Last, t], z];
v1 = Map[Length, v] (* A353656 *)
u1 - v1 (* (A353657 *)
(* Peter J. C. Moses, May 04 2022 *)
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 04 2022
STATUS
approved