OFFSET
1,2
COMMENTS
REFERENCES
F. Smarandache, "Properties of the numbers", Univ. of Craiova Archives, 1975; Arizona State University Special Collections, Tempe, AZ.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
F. Iacobescu, Smarandache Partition Type and Other Sequences, Bull. Pure Appl. Sciences, Vol. 16E, No. 2 (1997), pp. 237-240.
F. Smarandache, Sequences of Numbers Involved in Unsolved Problems.
Eric Weisstein's World of Mathematics, Smarandache Sequences.
EXAMPLE
The digits (from right to left) have values 1, 3, 6, 10, etc. (A000217), hence a(20) = 10012 because 20 = 1*15 + 0*10 + 0*6 + 1*3 + 2*1. - Stefano Spezia, Apr 25 2024
MATHEMATICA
A000217[n_]:=n(n+1)/2; a[n_]:=Module[{k=0}, num=n; digits={}; k=Floor[(Sqrt[1+8num]-1)/2]; While[num>0, AppendTo[digits, Floor[num/A000217[k]]]; num=Mod[num, A000217[k]]; kold=k; k=Floor[(Sqrt[1+8num]-1)/2]; While[k<kold-1, AppendTo[digits, 0]; kold--]]; FromDigits[digits]]; Array[a, 37] (* Stefano Spezia, Apr 25 2024 *)
PROG
(Haskell)
a000462 n = g [] n $ reverse $ takeWhile (<= n) $ tail a000217_list where
g as 0 [] = read $ concat $ map show $ reverse as :: Integer
g as x (t:ts) = g (a:as) r ts where (a, r) = divMod x t
-- Reinhard Zumkeller, Mar 27 2011
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
John Radu (Suttones(AT)aol.com)
STATUS
approved