login
A000462
Numbers written in base of triangular numbers.
7
1, 2, 10, 11, 12, 100, 101, 102, 110, 1000, 1001, 1002, 1010, 1011, 10000, 10001, 10002, 10010, 10011, 10012, 100000, 100001, 100002, 100010, 100011, 100012, 100100, 1000000, 1000001, 1000002, 1000010, 1000011, 1000012, 1000100, 1000101, 10000000, 10000001
OFFSET
1,2
COMMENTS
A003056 and A057945 give lengths and sums. - Reinhard Zumkeller, Mar 27 2011
REFERENCES
F. Smarandache, "Properties of the numbers", Univ. of Craiova Archives, 1975; Arizona State University Special Collections, Tempe, AZ.
LINKS
F. Iacobescu, Smarandache Partition Type and Other Sequences, Bull. Pure Appl. Sciences, Vol. 16E, No. 2 (1997), pp. 237-240.
Eric Weisstein's World of Mathematics, Smarandache Sequences.
EXAMPLE
The digits (from right to left) have values 1, 3, 6, 10, etc. (A000217), hence a(20) = 10012 because 20 = 1*15 + 0*10 + 0*6 + 1*3 + 2*1. - Stefano Spezia, Apr 25 2024
MATHEMATICA
A000217[n_]:=n(n+1)/2; a[n_]:=Module[{k=0}, num=n; digits={}; k=Floor[(Sqrt[1+8num]-1)/2]; While[num>0, AppendTo[digits, Floor[num/A000217[k]]]; num=Mod[num, A000217[k]]; kold=k; k=Floor[(Sqrt[1+8num]-1)/2]; While[k<kold-1, AppendTo[digits, 0]; kold--]]; FromDigits[digits]]; Array[a, 37] (* Stefano Spezia, Apr 25 2024 *)
PROG
(Haskell)
a000462 n = g [] n $ reverse $ takeWhile (<= n) $ tail a000217_list where
g as 0 [] = read $ concat $ map show $ reverse as :: Integer
g as x (t:ts) = g (a:as) r ts where (a, r) = divMod x t
-- Reinhard Zumkeller, Mar 27 2011
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
John Radu (Suttones(AT)aol.com)
STATUS
approved