login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282093
Larger member of a pair (x,y) which solves x^2+y^2 = z^3 for positive x, y and z.
2
2, 10, 11, 16, 26, 30, 39, 46, 52, 54, 68, 80, 88, 100, 110, 117, 120, 128, 130, 142, 145, 170, 198, 205, 208, 222, 236, 240, 250, 270, 286, 297, 310, 312, 322, 350, 366, 368, 371, 377, 406, 414, 415, 416, 432, 455, 481, 488, 505, 518, 520, 524, 544, 549, 584
OFFSET
1,1
COMMENTS
Values y such that x^2+y^2 = z^3 has a solution 1<=x<=y with integer x, y and z.
The positive values of A033431 are a subsequence, induced by solutions where x=y.
There are entries which have more than one representation, e.g., 10^2 + 198^2 = 34^3 and 107^2 + 198^2 = 37^3 both with y=198. 234^2 + 415^2 = 61^3 and 320^2 + 415^2 = 65^3 both with y=415.
The ordered sequence of x can apparently be constructed by retrieving the perfect squares in A106265 and printing their square roots: 1, 2, 5, 7, 8, 9, 10, 11, 16, 17, 18 , 26, 27, 30,...
EXAMPLE
2^2+2^2=2^3, so 2 is in. 5^2+10^2=5^3, so 10 is in. 2^2+11^2 = 5^3, so 11 is in. 16^2+16^2=8^3, so 16 is in.
MAPLE
isA282093 := proc(y)
local x, z3 ;
for x from 1 to y do
z3 := x^2+y^2 ;
if isA000578(z3) then
return true ;
end if;
end do:
return false ;
end proc:
for y from 1 to 800 do
if isA282093(y) then
printf("%d, \n", y) ;
end if;
end do:
MATHEMATICA
isA282093[y_] := Module[{x, z3},
For[x = 1, x <= y, x++, z3 = x^2+y^2; If[IntegerQ[z3^(1/3)], Return[True]]]; Return[False]];
Reap[For[y = 1, y <= 800, y++, If[isA282093[y], Print[y]; Sow[y]]]][[2, 1]] (* Jean-François Alcover, May 29 2023, after R. J. Mathar *)
CROSSREFS
Cf. A000404 (values of z), A033431, A106265.
Sequence in context: A000462 A340649 A309942 * A032930 A033293 A231501
KEYWORD
nonn
AUTHOR
R. J. Mathar, Feb 06 2017
STATUS
approved