The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A282094 Larger member of a pair (x,y) which solves x^2 + y^2 = z^3 for nonnegative x, y and z. 0
 0, 1, 2, 8, 10, 11, 16, 26, 27, 30, 39, 46, 52, 54, 64, 68, 80, 88, 100, 110, 117, 120, 125, 128, 130, 142, 145, 170, 198, 205, 208, 216, 222, 236, 240, 250, 270, 286, 297, 310, 312, 322, 343, 350, 366, 368, 371, 377, 406, 414, 415, 416, 432, 455, 481 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Values y such that x^2 + y^2 = z^3 has a solution 0 <= x <= y with integer x, y and z. Differs from A282093 because solutions with x=0 are admitted; (x,y) = (0,t^3) solves the equation with z = t^2. LINKS FORMULA Equals A282093 union A000578. EXAMPLE 0^2 + 0^2 = 0^3, so 0 is in. 0^2 + 1^2 = 1^3, so 1 is in. 2^2 + 2^2 = 2^3, so 2 is in. 0^2 + 8^2 = 4^3, so 8 is in. 5^2 + 10^2 = 5^3, so 10 is in. MAPLE isA282094 := proc(y)     local x, z3 ;     for x from 0 to y do         z3 := x^2+y^2 ;         if isA000578(z3) then             return true ;         end if;     end do:     return false ; end proc: for y from 0 to 800 do     if isA282094(y) then         printf("%d, ", y) ;     end if; end do: PROG (Python) from sympy import factorint def is_cube(n):     if n==0: return 1     for i in factorint(n).values():         if i%3!=0: return 0     return 1 def ok(n): for x in range(n + 1):         z=x**2 + n**2         if is_cube(z): return 1     return 0 print [n for n in range(501) if ok(n)] # Indranil Ghosh, Jun 30 2017 (PARI) is(n)=my(n2=n^2); for(x=0, n, if(ispower(n2+x^2, 3), return(1))); 0 \\ Charles R Greathouse IV, Jun 30 2017 CROSSREFS Cf. A282093. Sequence in context: A139370 A101532 A032708 * A084124 A081693 A022298 Adjacent sequences:  A282091 A282092 A282093 * A282095 A282096 A282097 KEYWORD nonn AUTHOR R. J. Mathar, Feb 06 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 7 15:56 EDT 2020. Contains 333306 sequences. (Running on oeis4.)