OFFSET
1,1
COMMENTS
For the pairs (m, k), is k always unique?
The pairs (m, k) are (7, 3), (18, 8), (117, 43), (239, 5), (378, 132), (843, 377), (2207, 987), (2943, 73), (4443, 53), (4662, 1568), (6072, 5118), (8307, 743), (8708, 2112), (9872, 2738), ...
EXAMPLE
7 is in the sequence because of the pair (m, k) = (7, 3), 7^2+1 = 2*5^2 and 3^2+1 = 2*5 with the same prime factors 2 and 5.
MATHEMATICA
Select[Range@ 5000, Function[m, Total@ Boole@ Table[Function[w, And[SameQ[First@ w, #], SameQ[Last@ w, #]] &@ Union@ Flatten@ w]@ Map[FactorInteger[#][[All, 1]] &, {m^2 + 1, k^2 + 1}], {k, m - 1}] > 0]] (* Michael De Vlieger, Feb 07 2017 *)
PROG
(Perl)
use ntheory qw(:all);
for (my ($m, %t) = 1 ; ; ++$m) {
my $k = vecprod(map{$_->[0]}factor_exp($m**2+1));
push @{$t{$k}}, $m;
if (@{$t{$k}} >= 2) {
print'('.join(', ', reverse(@{$t{$k}})).")\n";
}
} # Daniel Suteu, Feb 08 2017
(PARI) isok(n)=ok = 0; vn = factor(n^2+1)[, 1]; for (k=1, n-1, if (factor(k^2+1)[, 1] == vn, ok = 1; break); ); ok; \\ Michel Marcus, Feb 09 2017
(PARI) squeeze(f)=factorback(f)\2
list(lim)=my(v=List(), m=Map(), t); for(n=1, lim, t=squeeze(factor(n^2+1)[, 1]); if(mapisdefined(m, t), listput(v, n), mapput(m, t, 0))); Vec(v) \\ Charles R Greathouse IV, Feb 12 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 06 2017
EXTENSIONS
a(15)-a(29) from Daniel Suteu, Feb 08 2017
a(30) from Daniel Suteu, Feb 10 2017
a(31)-a(34) from Joerg Arndt, Feb 11 2017
STATUS
approved