

A282089


Decimal expansion of constant 1.287194... related to a conjectural Viètelike formula for Pi.


1



1, 2, 8, 7, 1, 9, 4, 0, 3, 6, 0, 6, 7, 9, 2, 4, 0, 1, 7, 0, 2, 0, 9, 2, 7, 8, 0, 7, 5, 8, 1, 1, 9, 8, 7, 6, 4, 4, 0, 8, 3, 5, 4, 3, 5, 6, 6, 9, 9, 2, 7, 8, 0, 5, 4, 4, 8, 6, 1, 4, 1, 2, 9, 3, 2, 7, 1, 4, 5, 2, 8, 3, 9, 1, 4, 4, 8, 7, 2, 0, 2, 2, 1, 1, 2, 3, 7, 9, 0, 7, 9, 9, 2, 6, 0, 9, 3, 4, 0, 3, 3, 9, 9, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Conjecture: Pi = lim_{k > infinity} 2^{k + 1}*(1  c_k), where the variable c_k is defined by a set of the Viètelike recurrence relations {a_1 = sqrt(2), a_k = sqrt(2 + a_{k  1}), b_k = sqrt(2  a_k)/a_{k + 1}, c_1 = b_1, c_k = (c_{k  1} + b_k)/(1  c_{k  1}*b_k)}. From this conjecture it follows that Sum_{k >= 1} (1  c_k) is convergent [Abrarov and Quine].


LINKS

Sanjar Abrarov, Table of n, a(n) for n = 1..104
S. M. Abrarov and B. M. Quine, A set of the Viètelike recurrence relations for the unity constant, arXiv:1702.00901 [math.GM], 2017.


FORMULA

Sum_{k >= 1} (1  c_k) = 1.287194... , where c_k is computed by the recurrence equations a_1 = sqrt(2), a_k = sqrt(2 + a_{k  1}), b_k = sqrt(2  a_k)/a_{k + 1}, c_1 = b_1 and c_k = (c_{k  1} + b_k)/(1  c_{k  1}*b_k).


EXAMPLE

1.287194036067924017020927807581...


MATHEMATICA

Clear[a, b, c]
a[k_] := N[Nest[Sqrt[2 + #1] &, 0, k], 100]
b[k_] := b[k] = Sqrt[2  a[k]]/a[k + 1]
c[1] := b[1] = b[1]
c[k_] := c[k] = (c[k  1] + b[k])/(1  c[k  1]*b[k])
k := 90
Print["Index k = ", k]
m := 1
Print["Power m = ", m]
(* The equation (12) *)
apprPi := 2^(k + 1)*(1  c[k]^m)
Print["Actual value of Pi is ", N[Pi, 30]]
Print["At k = ", k, " the approximated value of Pi is ", N[apprPi, 30]]
K := 300
Print["Truncating integer K = ", K]
Print["Computing the digits ..."]
RealDigits[N[Sum[1  c[k]^m, {k, 1, K}], 30]][[1]]


CROSSREFS

Cf. A000796.
Sequence in context: A011060 A278808 A323459 * A195367 A135725 A265295
Adjacent sequences: A282086 A282087 A282088 * A282090 A282091 A282092


KEYWORD

nonn,cons


AUTHOR

Sanjar Abrarov, Feb 06 2017


STATUS

approved



