login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304992
G.f.: Sum_{k>=0} A000041(k)^3 * x^k / Sum_{k>=0} A000009(k) * x^k.
0
1, 0, 7, 18, 98, 210, 969, 1938, 7037, 15258, 44815, 93180, 262391, 518550, 1311015, 2657328, 6189160, 12124098, 27239760, 52063668, 111630480, 211503288, 432900236, 806091180, 1610854427, 2940167268, 5691072911, 10289144976, 19402974147, 34523231688
OFFSET
0,3
COMMENTS
In general, if m > 1 and g.f. = Sum_{k>=0} A000041(k)^m * x^k / Sum_{k>=0} A000009(k) * x^k, then a(n, m) ~ exp(Pi*sqrt((2*m^2 - 1)*n/3)) * ((2*m^2 - 1)^(m - 1/2) / (2^(3*m - 1) * 3^(m/2) * m^(2*m - 1) * n^m)).
FORMULA
a(n) ~ 289 * sqrt(17/3) * exp(Pi*sqrt(17*n/3)) / (186624*n^3).
MATHEMATICA
nmax = 50; CoefficientList[Series[Sum[PartitionsP[k]^3*x^k, {k, 0, nmax}] / Sum[PartitionsQ[k]*x^k, {k, 0, nmax}], {x, 0, nmax}], x]
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, May 23 2018
STATUS
approved