login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304993
a(n) = n*(n + 1)*(7*n + 5)/6.
4
0, 4, 19, 52, 110, 200, 329, 504, 732, 1020, 1375, 1804, 2314, 2912, 3605, 4400, 5304, 6324, 7467, 8740, 10150, 11704, 13409, 15272, 17300, 19500, 21879, 24444, 27202, 30160, 33325, 36704, 40304, 44132, 48195, 52500, 57054, 61864, 66937, 72280, 77900, 83804, 89999, 96492
OFFSET
0,2
COMMENTS
The sequence provides the sums of the triangular numbers from A000217(n) to A000217(2*n).
FORMULA
O.g.f.: x*(4 + 3*x)/(1 - x)^4.
E.g.f.: x*(24 + 33*x + 7*x^2)*exp(x)/6.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = -A255211(-n-1).
a(n) + a(-n) = A016742(n).
a(n) = Sum_{k = n..2*n} k*(k+1)/2.
MATHEMATICA
Table[n (n + 1) (7 n + 5)/6, {n, 0, 50}]
LinearRecurrence[{4, -6, 4, -1}, {0, 4, 19, 52}, 50] (* Harvey P. Dale, May 03 2023 *)
PROG
(PARI) concat(0, Vec(x*(4 + 3*x)/(1 - x)^4 + O(x^40))) \\ Colin Barker, May 25 2018
CROSSREFS
Partial sums of A022265.
Cf. A045943: Sum_{k = n..2*n} k.
Cf. A050409: Sum_{k = n..2*n} k^2.
Row sums of the triangle in A141433.
Sequence in context: A263759 A162254 A138617 * A171354 A159833 A166808
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, May 23 2018
STATUS
approved