OFFSET
1,3
LINKS
G. C. Greubel, Rows n = 1..50 of the triangle, flattened
FORMULA
G.f.: Sum_{k>=0} Sum_{n>=0} T(n,k)*x^n*y^k = y^2*x*(2*x+1-3*y)/((1-y)^3*(x-1)^2). (G.f. for the full array, not just the triangular subspace) - R. J. Mathar, Feb 19 2020
Sum_{k=1..n} T(n, k) = A304993(n-1) = (n-1)*n*(7*n -2)/6. - G. C. Greubel, Apr 01 2021
EXAMPLE
Triangle begins as:
0;
0, 4;
0, 7, 12;
0, 10, 18, 24;
0, 13, 24, 33, 40;
0, 16, 30, 42, 52, 60;
0, 19, 36, 51, 64, 75, 84;
0, 22, 42, 60, 76, 90, 102, 112;
0, 25, 48, 69, 88, 105, 120, 133, 144;
0, 28, 54, 78, 100, 120, 138, 154, 168, 180;
MAPLE
A141433 := proc(n, m) (m-1)*(3*n-m) ; end proc:
seq(seq(A141433(n, m), m=1..n), n=1..18) ; # R. J. Mathar, Sep 14 2011
MATHEMATICA
Flatten[Table[(m-1)(3n-m), {n, 10}, {m, n}]] (* Harvey P. Dale, Feb 04 2016 *)
PROG
(Magma) [(k-1)*(3*n-k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 01 2021
(Sage) flatten([[(k-1)*(3*n-k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 01 2021
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula and Gary W. Adamson, Aug 06 2008
STATUS
approved