login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n, k) = (k-1)*(3*n-k), read by rows.
2

%I #23 Apr 01 2021 17:27:19

%S 0,0,4,0,7,12,0,10,18,24,0,13,24,33,40,0,16,30,42,52,60,0,19,36,51,64,

%T 75,84,0,22,42,60,76,90,102,112,0,25,48,69,88,105,120,133,144,0,28,54,

%U 78,100,120,138,154,168,180

%N Triangle T(n, k) = (k-1)*(3*n-k), read by rows.

%H G. C. Greubel, <a href="/A141433/b141433.txt">Rows n = 1..50 of the triangle, flattened</a>

%F G.f.: Sum_{k>=0} Sum_{n>=0} T(n,k)*x^n*y^k = y^2*x*(2*x+1-3*y)/((1-y)^3*(x-1)^2). (G.f. for the full array, not just the triangular subspace) - _R. J. Mathar_, Feb 19 2020

%F Sum_{k=1..n} T(n, k) = A304993(n-1) = (n-1)*n*(7*n -2)/6. - _G. C. Greubel_, Apr 01 2021

%e Triangle begins as:

%e 0;

%e 0, 4;

%e 0, 7, 12;

%e 0, 10, 18, 24;

%e 0, 13, 24, 33, 40;

%e 0, 16, 30, 42, 52, 60;

%e 0, 19, 36, 51, 64, 75, 84;

%e 0, 22, 42, 60, 76, 90, 102, 112;

%e 0, 25, 48, 69, 88, 105, 120, 133, 144;

%e 0, 28, 54, 78, 100, 120, 138, 154, 168, 180;

%p A141433 := proc(n,m) (m-1)*(3*n-m) ; end proc:

%p seq(seq(A141433(n,m),m=1..n),n=1..18) ; # _R. J. Mathar_, Sep 14 2011

%t Flatten[Table[(m-1)(3n-m),{n,10},{m,n}]] (* _Harvey P. Dale_, Feb 04 2016 *)

%o (Magma) [(k-1)*(3*n-k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Apr 01 2021

%o (Sage) flatten([[(k-1)*(3*n-k) for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Apr 01 2021

%Y Cf. A304993 (row sums).

%K nonn,easy,tabl

%O 1,3

%A _Roger L. Bagula_ and _Gary W. Adamson_, Aug 06 2008