login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141431
Triangle T(n,k) = (k-1)*(3*n-k+1), read by rows.
1
0, 0, 5, 0, 8, 14, 0, 11, 20, 27, 0, 14, 26, 36, 44, 0, 17, 32, 45, 56, 65, 0, 20, 38, 54, 68, 80, 90, 0, 23, 44, 63, 80, 95, 108, 119, 0, 26, 50, 72, 92, 110, 126, 140, 152, 0, 29, 56, 81, 104, 125, 144, 161, 176, 189, 0, 32, 62, 90, 116, 140, 162, 182, 200, 216, 230, 0, 35, 68, 99, 128, 155, 180, 203, 224, 243, 260, 275
OFFSET
1,3
FORMULA
G.f.: Sum_{n>=0} Sum_{k>=0} T(n,k)*x^n*y^k = y^2*x*(x*y-4*y+x+2)/((1-y)^3*(1-x)^2). - R. J. Mathar, Nov 27 2015. x and y swapped to align with standard, 19 Feb 2020
Sum_{k=1..n} T(n, k) = (n-1)*n*(7*n+1)/6 = A245301(n-1). - G. C. Greubel, Mar 31 2021
EXAMPLE
Triangle begins as:
0;
0, 5;
0, 8, 14;
0, 11, 20, 27;
0, 14, 26, 36, 44;
0, 17, 32, 45, 56, 65;
0, 20, 38, 54, 68, 80, 90;
0, 23, 44, 63, 80, 95, 108, 119;
0, 26, 50, 72, 92, 110, 126, 140, 152;
0, 29, 56, 81, 104, 125, 144, 161, 176, 189;
MAPLE
A141431 := proc(n, k)
(k-1)*(3*n-k+1) ;
end proc:
seq(seq(A141431(n, k), k=1..n), n=1..14) ; # R. J. Mathar, Nov 10 2011
MATHEMATICA
Table[(k-1)*(3*n-k+1), {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Mar 31 2021 *)
PROG
(Magma) [(k-1)*(3*n-k+1): k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 31 2021
(Sage) flatten([[(k-1)*(3*n-k+1) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 31 2021
CROSSREFS
Columns: A016789 (k=2), A016933 (k=3), A008591 (k=4).
Cf. A245301 (row sums).
Sequence in context: A199729 A240358 A200422 * A166011 A344144 A372364
KEYWORD
nonn,easy,tabl
AUTHOR
EXTENSIONS
More terms added by G. C. Greubel, Mar 31 2021
STATUS
approved