This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A016933 a(n) = 6n + 2. 34
 2, 8, 14, 20, 26, 32, 38, 44, 50, 56, 62, 68, 74, 80, 86, 92, 98, 104, 110, 116, 122, 128, 134, 140, 146, 152, 158, 164, 170, 176, 182, 188, 194, 200, 206, 212, 218, 224, 230, 236, 242, 248, 254, 260, 266, 272, 278, 284, 290, 296, 302, 308, 314, 320, 326 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Number of 3 X n binary matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01;0), (10;0) and (11;0). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i11 for which 1 - x + x^n is reducible. - Ron Knott, Oct 13 2016 For the Collatz problem, these are the descenders' values that require division by 2. - Fred Daniel Kline, Jan 19 2017 For n > 3, also the number of (not necessarily maximum) cliques in the n-helm graph. - Eric W. Weisstein, Nov 29 2017 LINKS Tanya Khovanova, Recursive Sequences S. Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp. S. Kitaev, On multi-avoidance of right angled numbered polyomino patterns, University of Kentucky Research Reports (2004). Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014. Eric Weisstein's World of Mathematics, Clique Eric Weisstein's World of Mathematics, Helm Graph Index entries for linear recurrences with constant coefficients, signature (2,-1). FORMULA A008615(a(n)) = n+1. - Reinhard Zumkeller, Feb 27 2008 A157176(a(n)) = A013730(n). - Reinhard Zumkeller, Feb 24 2009 A089911(2*a(n)) = 3. - Reinhard Zumkeller, Jul 05 2013 a(n) = 2*(6*n-1) - a(n-1) (with a(0)=2). - Vincenzo Librandi, Nov 20 2010 G.f.: 2*(1+2*x)/(1-x)^2. - Colin Barker, Jan 08 2012 a(n) = (3 * A016813(n) + 1) / 2.- Fred Daniel Kline, Jan 20 2017 a(n) = A016789(A005843(n)). - Felix FrÃ¶hlich, Jan 20 2017 MAPLE a[1]:=2:for n from 2 to 100 do a[n]:=a[n-1]+6 od: seq(a[n], n=1..47); # Zerinvary Lajos, Mar 16 2008 MATHEMATICA Range[2, 500, 6] (* Vladimir Joseph Stephan Orlovsky, May 26 2011 *) Table[6 n + 2, {n, 0, 20}] (* Eric W. Weisstein, Nov 29 2017 *) 6 Range[0, 20] + 2 (* Eric W. Weisstein, Nov 29 2017 *) LinearRecurrence[{2, -1}, {8, 14}, {0, 20}] (* Eric W. Weisstein, Nov 29 2017 *) CoefficientList[Series[2 (1 + 2 x)/(-1 + x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Nov 29 2017 *) PROG (Sage) [i+2 for i in range(280) if gcd(i, 6) == 6] # Zerinvary Lajos, May 20 2009 (Haskell) a016933 = (+ 2) . (* 6)  -- Reinhard Zumkeller, Jul 05 2013 (PARI) a(n)=6*n+2 \\ Charles R Greathouse IV, Jul 10 2016 CROSSREFS Cf. A008588, A016921, A016945, A016957, A016969, A017569, A016777, A016813. Sequence in context: A105610 A117104 A082933 * A294960 A101959 A241003 Adjacent sequences:  A016930 A016931 A016932 * A016934 A016935 A016936 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 04:29 EST 2019. Contains 319344 sequences. (Running on oeis4.)