login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A013730
a(n) = 2^(3*n+1).
15
2, 16, 128, 1024, 8192, 65536, 524288, 4194304, 33554432, 268435456, 2147483648, 17179869184, 137438953472, 1099511627776, 8796093022208, 70368744177664, 562949953421312, 4503599627370496, 36028797018963968, 288230376151711744, 2305843009213693952, 18446744073709551616
OFFSET
0,1
COMMENTS
1/2 + 1/16 + 1/128 + 1/1024 + ... = 4/7. - Gary W. Adamson, Aug 29 2008
FORMULA
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 8*a(n-1), n > 0; a(0)=2.
G.f.: 2/(1-8x). (End)
a(n) = A157176(A016921(n)) = A157176(A016933(n)). - Reinhard Zumkeller, Feb 24 2009
From Amiram Eldar, May 08 2023: (Start)
Sum_{n>=0} (-1)^n/a(n) = 4/9.
Product_{n>=0} (1 - 1/a(n)) = A132024. (End)
E.g.f.: 2*exp(8*x). - Stefano Spezia, May 29 2024
MAPLE
seq(2^(3*n+1), n=0..19); # Nathaniel Johnston, Jun 26 2011
MATHEMATICA
Table[2^n, {n, 1, 100, 3}] (* Vladimir Joseph Stephan Orlovsky, Jun 14 2011 *)
2^(3 Range[0, 40] + 1) (* Vladimir Joseph Stephan Orlovsky, Jun 14 2011 *)
Table[2^(3 n + 1), {n, 0, 20}] (* Eric W. Weisstein, Nov 03 2024 *)
2^(3 Range[0, 20] + 1) (* Eric W. Weisstein, Nov 03 2024 *)
2^Range[1, 61, 3] (* Eric W. Weisstein, Nov 03 2024 *)
LinearRecurrence[{8}, {2}, 20] (* Eric W. Weisstein, Nov 03 2024 *)
CoefficientList[Series[2/(1 - 8 x), {x, 0, 20}], x] (* Eric W. Weisstein, Nov 03 2024 *)
PROG
(Magma) [2^(3*n+1): n in [0..30]]; // Vincenzo Librandi, May 04 2011
(PARI) a(n)=2<<(3*n) \\ Charles R Greathouse IV, Jun 14 2011
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved