Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Mar 31 2021 04:10:30
%S 0,0,5,0,8,14,0,11,20,27,0,14,26,36,44,0,17,32,45,56,65,0,20,38,54,68,
%T 80,90,0,23,44,63,80,95,108,119,0,26,50,72,92,110,126,140,152,0,29,56,
%U 81,104,125,144,161,176,189,0,32,62,90,116,140,162,182,200,216,230,0,35,68,99,128,155,180,203,224,243,260,275
%N Triangle T(n,k) = (k-1)*(3*n-k+1), read by rows.
%H G. C. Greubel, <a href="/A141431/b141431.txt">Rows n = 1..50 of the triangle, flattened</a>
%F G.f.: Sum_{n>=0} Sum_{k>=0} T(n,k)*x^n*y^k = y^2*x*(x*y-4*y+x+2)/((1-y)^3*(1-x)^2). - _R. J. Mathar_, Nov 27 2015. x and y swapped to align with standard, 19 Feb 2020
%F Sum_{k=1..n} T(n, k) = (n-1)*n*(7*n+1)/6 = A245301(n-1). - _G. C. Greubel_, Mar 31 2021
%e Triangle begins as:
%e 0;
%e 0, 5;
%e 0, 8, 14;
%e 0, 11, 20, 27;
%e 0, 14, 26, 36, 44;
%e 0, 17, 32, 45, 56, 65;
%e 0, 20, 38, 54, 68, 80, 90;
%e 0, 23, 44, 63, 80, 95, 108, 119;
%e 0, 26, 50, 72, 92, 110, 126, 140, 152;
%e 0, 29, 56, 81, 104, 125, 144, 161, 176, 189;
%p A141431 := proc(n,k)
%p (k-1)*(3*n-k+1) ;
%p end proc:
%p seq(seq(A141431(n,k),k=1..n),n=1..14) ; # _R. J. Mathar_, Nov 10 2011
%t Table[(k-1)*(3*n-k+1), {n,15}, {k,n}]//Flatten (* _G. C. Greubel_, Mar 31 2021 *)
%o (Magma) [(k-1)*(3*n-k+1): k in [1..n], n in [1..15]]; // _G. C. Greubel_, Mar 31 2021
%o (Sage) flatten([[(k-1)*(3*n-k+1) for k in (1..n)] for n in (1..15)]) # _G. C. Greubel_, Mar 31 2021
%Y Columns: A016789 (k=2), A016933 (k=3), A008591 (k=4).
%Y Cf. A245301 (row sums).
%K nonn,easy,tabl
%O 1,3
%A _Roger L. Bagula_ and _Gary W. Adamson_, Aug 06 2008
%E More terms added by _G. C. Greubel_, Mar 31 2021