login
A141434
Triangle T(n, k) = (k-1)*(3*n-k-1), read by rows.
1
0, 0, 3, 0, 6, 10, 0, 9, 16, 21, 0, 12, 22, 30, 36, 0, 15, 28, 39, 48, 55, 0, 18, 34, 48, 60, 70, 78, 0, 21, 40, 57, 72, 85, 96, 105, 0, 24, 46, 66, 84, 100, 114, 126, 136, 0, 27, 52, 75, 96, 115, 132, 147, 160, 171
OFFSET
1,3
FORMULA
Sum_{k=1..n} T(n,k) = (n-1)*n*(7*n-5)/6. - R. J. Mathar, Sep 07 2011
EXAMPLE
Triangle begins as:
0;
0, 3;
0, 6, 10;
0, 9, 16, 21;
0, 12, 22, 30, 36;
0, 15, 28, 39, 48, 55;
0, 18, 34, 48, 60, 70, 78;
0, 21, 40, 57, 72, 85, 96, 105;
0, 24, 46, 66, 84, 100, 114, 126, 136;
0, 27, 52, 75, 96, 115, 132, 147, 160, 171;
MAPLE
A141434:= (n, k) -> (k-1)*(3*n-k-1); seq(seq(A141434(n, k), k=1..n), n=1..12); # G. C. Greubel, Apr 01 2021
MATHEMATICA
Table[(k-1)*(3*n-k-1), {n, 12}, {k, n}]//Flatten (* modified by G. C. Greubel, Apr 01 2021 *)
PROG
(Magma) [(k-1)*(3*n-k-1): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 01 2021
(Sage) flatten([[(k-1)*(3*n-k-1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 01 2021
CROSSREFS
Cf. A255211 (row sums).
Sequence in context: A216473 A378390 A198433 * A077911 A057381 A144091
KEYWORD
nonn,easy,tabl
AUTHOR
STATUS
approved