login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141435
a(1) = 1, a(2) = 2; a(n) = a(n-a(1)) + a(n-a(2)) + a(n-a(3)) + a(n-a(4)) + ...
1
1, 2, 3, 6, 11, 20, 38, 71, 132, 247, 461, 861, 1609, 3005, 5613, 10485, 19584, 36581, 68330, 127632, 238404, 445314, 831798, 1553712, 2902170, 5420945, 10125754, 18913838, 35329048, 65990929, 123264078, 230244265, 430071949, 803328933
OFFSET
1,2
COMMENTS
Thus we get a self-reference sequence that grows exponentially. a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-6) + a(n-11) + a(n-20) + ...
A Fibonacci-like sequence, even closer to the tribonacci numbers.
Lim n-> oo log (a(n))/n converges.
EXAMPLE
a(6) = 20 because 20 = a(5) + a(4) + a(3) = 11 + 6 + 3
a(8) = 71 because 71 = a(7) + a(6) + a(5) + a(2) = 38 + 20 + 11 + 2
MAPLE
A141435 := proc(n) option remember; local a, i; if n <= 3 then RETURN(n); else a :=0 ; for i from 1 to n-1 do if n-procname(i) < 1 then RETURN(a); else a := a+procname(n-procname(i)) ; fi; od; RETURN(a); fi; end: for n from 1 to 80 do printf("%d, ", A141435(n)) ; od: # R. J. Mathar, Nov 03 2008
PROG
(Python)
def A141435(terms):
seq = [1, 2]
for n in range(3, terms):
s = 0
for m in seq:
if (n - m) > 0:
s += seq[n - m - 1] #fix for python indexing
seq.append(s)
return seq
print(A141435(40)) # Andres Cruz y Corro A, Jun 19 2019
KEYWORD
easy,nonn
AUTHOR
Raes Tom (tommy1729(AT)hotmail.com), Aug 06 2008
EXTENSIONS
More terms from R. J. Mathar, Nov 03 2008
STATUS
approved