OFFSET
1,2
COMMENTS
Thus we get a self-reference sequence that grows exponentially. a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-6) + a(n-11) + a(n-20) + ...
A Fibonacci-like sequence, even closer to the tribonacci numbers.
Lim n-> oo log (a(n))/n converges.
EXAMPLE
a(6) = 20 because 20 = a(5) + a(4) + a(3) = 11 + 6 + 3
a(8) = 71 because 71 = a(7) + a(6) + a(5) + a(2) = 38 + 20 + 11 + 2
MAPLE
A141435 := proc(n) option remember; local a, i; if n <= 3 then RETURN(n); else a :=0 ; for i from 1 to n-1 do if n-procname(i) < 1 then RETURN(a); else a := a+procname(n-procname(i)) ; fi; od; RETURN(a); fi; end: for n from 1 to 80 do printf("%d, ", A141435(n)) ; od: # R. J. Mathar, Nov 03 2008
PROG
(Python)
def A141435(terms):
seq = [1, 2]
for n in range(3, terms):
s = 0
for m in seq:
if (n - m) > 0:
s += seq[n - m - 1] #fix for python indexing
seq.append(s)
return seq
print(A141435(40)) # Andres Cruz y Corro A, Jun 19 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Raes Tom (tommy1729(AT)hotmail.com), Aug 06 2008
EXTENSIONS
More terms from R. J. Mathar, Nov 03 2008
STATUS
approved