login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077911
Expansion of 1/((1-x)*(1+x+2*x^2-x^3)).
2
1, 0, -1, 3, 0, -6, 10, 3, -28, 33, 27, -120, 100, 168, -487, 252, 891, -1881, 352, 4302, -6886, -1365, 19440, -23595, -16649, 83280, -73576, -109632, 340065, -194376, -595385, 1324203, -327808, -2915982, 4895802, 608355, -13315940, 16995033, 10245203, -57551208, 54055836, 71291784
OFFSET
0,4
MATHEMATICA
LinearRecurrence[{0, -1, 3, -1}, {1, 0, -1, 3}, 50] (* or *) CoefficientList[ Series[1/((1-x)*(1+x+2*x^2-x^3)), {x, 0, 50}], x] (* G. C. Greubel, Jul 02 2019 *)
PROG
(PARI) Vec(1/((1-x)*(1+x+2*x^2-x^3))+O(x^50)) \\ Charles R Greathouse IV, Sep 27 2012
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/((1-x)*(1+x+2*x^2-x^3)) )); // G. C. Greubel, Jul 02 2019
(Sage) (1/((1-x)*(1+x+2*x^2-x^3))).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jul 02 2019
(GAP) a:=[1, 0, -1, 3];; for n in [4..50] do a[n]:=-a[n-2]+3*a[n-3]-a[n-4]; od; a; # G. C. Greubel, Jul 02 2019
CROSSREFS
Cf. A077978.
Sequence in context: A378390 A198433 A141434 * A057381 A144091 A019145
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved