The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077978 Expansion of 1/(1+x+2*x^2-x^3). 6
 1, -1, -1, 4, -3, -6, 16, -7, -31, 61, -6, -147, 220, 68, -655, 739, 639, -2772, 2233, 3950, -11188, 5521, 20805, -43035, 6946, 99929, -156856, -36056, 449697, -534441, -401009, 1919588, -1652011, -2588174, 7811784, -4287447, -13924295, 30310973, -6749830, -67796411, 111607044, 17235948 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Yüksel Soykan, Summing Formulas For Generalized Tribonacci Numbers, arXiv:1910.03490 [math.GM], 2019. Index entries for linear recurrences with constant coefficients, signature (-1,-2,1). FORMULA a(n) = (-1)^n * A077955(n). - G. C. Greubel, Jun 25 2019 MATHEMATICA LinearRecurrence[{-1, -2, 1}, {1, -1, -1}, 50] (* or *) CoefficientList[ Series[1/(1+x+2*x^2-x^3), {x, 0, 50}], x] (* G. C. Greubel, Jun 25 2019 *) PROG (PARI) Vec(1/(1+x+2*x^2-x^3)+O(x^50)) \\ Charles R Greathouse IV, Sep 26 2012 (Magma) R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1+x+2*x^2-x^3) )); // G. C. Greubel, Jun 25 2019 (Sage) (1/(1+x+2*x^2-x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 25 2019 (GAP) a:=[1, -1, -1];; for n in [4..50] do a[n]:=-a[n-1]-2*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Jun 25 2019 CROSSREFS Cf. A077955, A077911, A078049. Sequence in context: A232328 A276229 A077955 * A192986 A336741 A072816 Adjacent sequences: A077975 A077976 A077977 * A077979 A077980 A077981 KEYWORD sign,easy AUTHOR N. J. A. Sloane, Nov 17 2002 EXTENSIONS Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 1 18:23 EDT 2023. Contains 363076 sequences. (Running on oeis4.)