login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077978
Expansion of 1/(1+x+2*x^2-x^3).
6
1, -1, -1, 4, -3, -6, 16, -7, -31, 61, -6, -147, 220, 68, -655, 739, 639, -2772, 2233, 3950, -11188, 5521, 20805, -43035, 6946, 99929, -156856, -36056, 449697, -534441, -401009, 1919588, -1652011, -2588174, 7811784, -4287447, -13924295, 30310973, -6749830, -67796411, 111607044, 17235948
OFFSET
0,4
LINKS
FORMULA
a(n) = (-1)^n * A077955(n). - G. C. Greubel, Jun 25 2019
MATHEMATICA
LinearRecurrence[{-1, -2, 1}, {1, -1, -1}, 50] (* or *) CoefficientList[ Series[1/(1+x+2*x^2-x^3), {x, 0, 50}], x] (* G. C. Greubel, Jun 25 2019 *)
PROG
(PARI) Vec(1/(1+x+2*x^2-x^3)+O(x^50)) \\ Charles R Greathouse IV, Sep 26 2012
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1+x+2*x^2-x^3) )); // G. C. Greubel, Jun 25 2019
(Sage) (1/(1+x+2*x^2-x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 25 2019
(GAP) a:=[1, -1, -1];; for n in [4..50] do a[n]:=-a[n-1]-2*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Jun 25 2019
CROSSREFS
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
EXTENSIONS
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021
STATUS
approved