login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/(1+x+2*x^2-x^3).
6

%I #28 Sep 08 2022 08:45:08

%S 1,-1,-1,4,-3,-6,16,-7,-31,61,-6,-147,220,68,-655,739,639,-2772,2233,

%T 3950,-11188,5521,20805,-43035,6946,99929,-156856,-36056,449697,

%U -534441,-401009,1919588,-1652011,-2588174,7811784,-4287447,-13924295,30310973,-6749830,-67796411,111607044,17235948

%N Expansion of 1/(1+x+2*x^2-x^3).

%H G. C. Greubel, <a href="/A077978/b077978.txt">Table of n, a(n) for n = 0..1000</a>

%H Yüksel Soykan, <a href="https://arxiv.org/abs/1910.03490">Summing Formulas For Generalized Tribonacci Numbers</a>, arXiv:1910.03490 [math.GM], 2019.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-2,1).

%F a(n) = (-1)^n * A077955(n). - _G. C. Greubel_, Jun 25 2019

%t LinearRecurrence[{-1,-2,1}, {1,-1,-1}, 50] (* or *) CoefficientList[ Series[1/(1+x+2*x^2-x^3), {x, 0, 50}], x] (* _G. C. Greubel_, Jun 25 2019 *)

%o (PARI) Vec(1/(1+x+2*x^2-x^3)+O(x^50)) \\ _Charles R Greathouse IV_, Sep 26 2012

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1+x+2*x^2-x^3) )); // _G. C. Greubel_, Jun 25 2019

%o (Sage) (1/(1+x+2*x^2-x^3)).series(x, 50).coefficients(x, sparse=False) # _G. C. Greubel_, Jun 25 2019

%o (GAP) a:=[1,-1,-1];; for n in [4..50] do a[n]:=-a[n-1]-2*a[n-2]+a[n-3]; od; a; # _G. C. Greubel_, Jun 25 2019

%Y Cf. A077955, A077911, A078049.

%K sign,easy

%O 0,4

%A _N. J. A. Sloane_, Nov 17 2002

%E Deleted certain dangerous or potentially dangerous links. - _N. J. A. Sloane_, Jan 30 2021