login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077981
Expansion of 1/(1+2*x-2*x^2-2*x^3).
1
1, -2, 6, -14, 36, -88, 220, -544, 1352, -3352, 8320, -20640, 51216, -127072, 315296, -782304, 1941056, -4816128, 11949760, -29649664, 73566592, -182532992, 452899840, -1123732480, 2788198656, -6918062592, 17165057536, -42589842944, 105673675776, -262196922368
OFFSET
0,2
FORMULA
a(n) = (-1)^n * A077937(n). - Ivan Neretin, Jun 19 2015
MATHEMATICA
LinearRecurrence[{-2, 2, 2}, {1, -2, 6}, 30] (* or *) CoefficientList[ Series[1/(1+2*x-2*x^2-2*x^3), {x, 0, 30}], x] (* G. C. Greubel, Jun 25 2019 *)
PROG
(PARI) Vec(1/(1+2*x-2*x^2-2*x^3) + O(x^30)) \\ Michel Marcus, Jun 19 2015
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1+2*x-2*x^2-2*x^3) )); // G. C. Greubel, Jun 25 2019
(Sage) (1/(1+2*x-2*x^2-2*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 25 2019
(GAP) a:=[1, -2, 6];; for n in [4..30] do a[n]:=-2*a[n-1]+2*a[n-2]+ 2*a[n-3]; od; a; # G. C. Greubel, Jun 25 2019
CROSSREFS
Cf. A077937.
Sequence in context: A175654 A017922 A077937 * A006653 A171924 A144530
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved